Background: A recent study has shown that niacin supplementation induces the conversion of type II to type I muscle fibres, thereby promoting a phenotypic shift in oxidative metabolism in porcine skeletal muscle. These effects may be mediated by modulation of the AMPK1/SIRT1 pathway, which activates peroxisome proliferator-activated receptor coactivator-1α (PGC-1α), a key regulator of fibre conversion, thereby promoting skeletal muscle mitochondrial biogenesis and myofibre conversion. In this study, we explored how niacin (NA) supplementation impacts the quality of meat and the characteristics of muscle fibers in Taihe Black-bone Silky Fowls (TBsf) exposed to heat conditions.
Methods: Chickens were rationally assigned to five different treatment groups with five replicates of six chickens each: thermophilic (TN), heat stress (HS) and HS + NA (HN) groups, with the HN group being supplemented with 200, 400 and 800 mg/kg (HS + NA, HS + NA and HS + NA) NA in the premix, respectively.
Results: The results of the experiment showed that addition of 800 mg/kg NA to the diet significantly improved TBsf muscle tenderness compared to HS. Dietary enrichment with 200-800 mg/kg NA significantly increased total antioxidant capacity, superoxide dismutase, and glutathione peroxidase activities, while significantly decreasing malondialdehyde compared to HS. Incorporation of 200-800 mg/kg NA into the diet significantly reduced lactate dehydrogenase activity and myosin heavy chain (MyHC-IIB) gene expression. Furthermore, adding 800 mg/kg NA can significantly enhance the mRNA expression of mitochondrial transcription factors (TFAM and TFB1M) in TBsf skeletal muscle. Adding 400 and 800 mg/kg of NA significantly increased the mRNA expression of AMP-activated protein kinase 1 (AMPK1), PGC-1α, cytochrome c oxidase (Cytc), and nuclear respiratory factor (NRF-1) in the skeletal muscle of TBsf. Supplementing NA at 200-400 mg/kg significantly increased the expression of Sirtuin 1 (SIRT1) mRNA in TBsf skeletal muscle.
Conclusion: The experimental results showed that the addition of NA to the diet reduced the shear force of TBsf muscle under heat exposure conditions. It increased the proportion of type I muscle fibres by increasing the antioxidant capacity of the muscle and by promoting mitochondr fibreial biogenesis. Considering the results of this study, it is recommended that TBsf be supplemented with 400-800 mg/kg of NA in the diet to reduce the adverse effects of heat stress on meat quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513878 | PMC |
http://dx.doi.org/10.3389/fvets.2024.1491553 | DOI Listing |
J Anat
January 2025
Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
Digital muscle reconstructions have gained attraction in recent years, serving as powerful tools in both educational and research contexts. These reconstructions can be derived from various 2D and 3D data sources, enabling detailed anatomical analyses. In this study, we evaluate the efficacy of surface scans in accurately reconstructing the volumes of the rotator cuff and teres major muscles across a diverse sample of hominoids.
View Article and Find Full Text PDFCommun Biol
January 2025
Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Endocrinology, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
This study aimed to identify the correlation of serum 25(OH)D level with sarcopenia and its components in Chinese elderly aged 65 years and above from rural areas. A total of 368 Chinese elderly aged 65 years and above in rural areas were enrolled. Indicators of muscle mass and strength, including the appendicular skeletal muscle mass (ASM), skeletal muscle index (SMI) and hand grip strength (HGS) were measured.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.
View Article and Find Full Text PDFJ Nutr
January 2025
School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China. Electronic address:
Background: Sarcopenia is an age-related, progressive, and systemic skeletal muscle disorder that can lead to numerous adverse outcomes. Animal studies have shown that sesame can enhance skeletal muscle blood flow and improve physical performance. However, no studies have yet explored the association between sesame consumption and the incidence of sarcopenia in the general population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!