A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Formation and estimated cytotoxicity of trihalomethanes and haloacetic acids during ozonation of nonylphenol in bromide-containing water after chlorination process: Impact of ozonation initial pH. | LitMetric

AI Article Synopsis

  • * Higher ozonation pH levels improved NP degradation but altered DBP formation, leading to reduced cytotoxicity at acidic and neutral pH, while increasing it at alkaline conditions.
  • * The researchers concluded that pH adjustments are not necessary to lower DBPs during the ozonation of NP in bromide-rich water and suggest further exploration of natural organic matter's role in DBP production.

Article Abstract

The presence of nonylphenol (NP) in bromide-containing water contributed to the formation of regulated disinfection by-products (DBPs): trihalomethanes-4 (THM4) and haloacetic acids-5 (HAA5). This study investigates the effects of ozonation pH on the degradation of NP, DBP formation, and DBP-estimated cytotoxicity. The ozonation pH was varied to 5, 7, and 9 to determine the effect of acidic, neutral, and alkaline conditions. The increase of ozonation initial pH improved the NP degradation. Ozonation of all initial pH conditions could decrease TCM, BDCM, and BDCM formation but increase the TBM formation at alkaline conditions. The formation of mono-HAA5 on the other hand, increased at all ozonation initial pH. Ozonation at acidic and neutral initial conditions can reduce the estimated cytotoxicity of the total formation of THM4 and HAA5 by 74.34 % and 93.31 %, respectively. In contrast, DBP's estimated cytotoxicity was raised by 33.72 % upon ozonation at an initial pH of alkaline. According to the study's findings, lowering the cytotoxicity of DBPs in acidic or alkaline environments can be achieved without changing the ozonation's pH. Based on these findings, pH changes are not required to reduce DBP during ozonation of NP-bromide-containing water. Future research on the impact of natural organic matter is recommended to investigate ozonation's capacity to reduce DBP production during ozonation of NP-containing natural water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513847PMC
http://dx.doi.org/10.1016/j.toxrep.2024.101769DOI Listing

Publication Analysis

Top Keywords

ozonation initial
20
estimated cytotoxicity
12
ozonation
11
nonylphenol bromide-containing
8
bromide-containing water
8
acidic neutral
8
alkaline conditions
8
initial conditions
8
reduce dbp
8
formation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!