Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitrogen (N) is an essential element for plant growth, development, and metabolism. In apple production, the excessive use of N fertilizer may cause high N stress. Whether high N stress can be alleviated by regulating melatonin supply is unclear. The effects of melatonin on root morphology, antioxidant enzyme activity and C and N accumulation in apple rootstock M9T337 treated with high N were studied by soil culture. The results showed that correctly raising the melatonin supply level is helpful to root development of M9T337 rootstock under severe N stress. Compared with HN treatment, HN+MT treatment increased root and leaf growth by 11.38%, and 28.01%, respectively. Under high N conditions, appropriately increasing melatonin level can activate antioxidant enzyme activity, reduce lipid peroxidation in roots, protect root structural integrity, promote the transport of sorbitol and sucrose to roots, and promote further degradation and utilization of sorbitol and sucrose in roots, which is conducive to the accumulation of photosynthetic products, thereby reducing the inhibitory effect of high N treatment on root growth. Based on the above research results, we found that under high N stress, melatonin significantly promotes nitrate absorption, enhances N metabolism enzyme activity, and upregulates related gene expression, and regulate N uptake and utilization in the M9T337 rootstock. These results presented a fresh notion for improving N application and preserving carbon-nitrogen balance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513380 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1482351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!