AI Article Synopsis

  • Inflammasomes are complex protein structures that help produce inflammation-related proteins IL-1β and IL-18, crucial in various diseases.
  • The study focuses on the NLRP3 inflammasome's role in tissue damage inflammation, particularly in a mouse model of tendinopathy caused by collagenase-induced degradation of the Achilles' tendon.
  • Findings show that while NLRP3 is essential for producing IL-1β, another inflammasome is necessary for IL-18 production, suggesting that targeting ASC could be a promising approach for treating tendinopathies.

Article Abstract

Inflammasomes are multiprotein complexes that regulate the bioactive production of IL-1β and IL-18, being implicated in the inflammatory response of different diseases. The inflammasome formed by the cytosolic sensor NLRP3 is highly promiscuous, as it could be activated by different pathogen- and sterile-signals. However, few models have studied the implication of NLRP3 in tissue damage-induced inflammation, particularly the implication of NLRP3 in tendinopathies. Here, we aimed to investigate the implication of NLRP3 in a mouse model of tendinopathy by collagenase degradation of the extracellular matrix in the Achilles' mice tendon. We found that NLRP3 was involved in the production of IL-1β, but another ASC-dependent inflammasome was required to produce IL-18 during sterile tissue damage. Our study suggests that in the immune response to extracellular matrix degradation different inflammasomes, probably expressed in different cell compartments, were able to differentially control IL-1β and IL-18 production in vivo. These results suggest the potential use of therapies targeting ASC as beneficial in the treatment of tendinopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581841PMC
http://dx.doi.org/10.1042/BSR20241282DOI Listing

Publication Analysis

Top Keywords

implication nlrp3
12
mouse model
8
model tendinopathy
8
production il-1β
8
il-1β il-18
8
extracellular matrix
8
nlrp3
5
multiple asc-dependent
4
asc-dependent inflammasomes
4
inflammasomes drive
4

Similar Publications

NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice.

Front Immunol

January 2025

Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.

Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.

View Article and Find Full Text PDF

Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework.

View Article and Find Full Text PDF

The Effect of Sleep Disruption on Cardiometabolic Health.

Life (Basel)

January 2025

Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea.

Sleep disruption has emerged as a significant public health concern with profound implications for metabolic health. This review synthesizes current evidence demonstrating the intricate relationships between sleep disturbances and cardiometabolic dysfunction. Epidemiological studies have consistently demonstrated that insufficient sleep duration (<7 h) and poor sleep quality are associated with increased risks of obesity, type 2 diabetes, and cardiovascular disease.

View Article and Find Full Text PDF

Hepatocellular CMPK2 promotes the development of metabolic dysfunction-associated steatohepatitis.

J Hepatol

January 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China; Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China. Electronic address:

Background & Aims: Metabolic dysfunction-associated steatohepatitis (MASH), a progressive subtype of metabolic dysfunction-associated steatotic liver disease (MASLD), has limited pharmacological treatment options. Therefore, we aimed to identify novel therapeutic targets.

Methods: The Gene Expression Omnibus (GEO) database and human liver tissues obtained from patients with MASH were used to identify differentially expressed genes in MASH.

View Article and Find Full Text PDF

Priming and release of cytokine IL-1β in microglial cells from the retina.

Exp Eye Res

January 2025

Department of Basic and Translational Science, Philadelphia, PA, 19104, United States; Department of Physiology, Philadelphia, PA, 19104, United States. Electronic address:

The P2X7 receptor (P2X7R) for extracellular ATP is implicated in several forms of retinal degeneration, including diabetic retinopathy, age-related macular degeneration, and glaucoma. P2X7R stimulation can trigger release of master cytokine IL-1β from microglia in the brain and from macrophages, but evidence of release from retinal microglia is indirect. Isolated mouse and rat retinal microglia, and wholemounts from CX3CR1 mice, were examined to determine if ATP induced IL-1β release directly from retinal microglial cells and if it also primed expression of IL-1β on an mRNA and protein level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!