Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Retinal neovascularisation is a major cause of blindness in patients with proliferative diabetic retinopathy (PDR). It is mediated by the complex interaction between dysfunctional ganglion cells, microglia, and vascular endothelial cells. Notably, retinal microglia, the intrinsic immune cells of the retina, play a crucial role in the pathogenesis of retinopathy. In this study, we found that lysophosphatidylserines (LysoPS) released from injured ganglion cells induced microglial extracellular trap formation and retinal neovascularisation. Mechanistically, LysoPS activated the GPR34-PI3K-AKT-NINJ1 signalling axis by interacting with the GPR34 receptor on the microglia. This activation upregulated the expression of inflammatory cytokines, such as IL-6, IL-8, VEGFA, and FGF2, and facilitated retinal vascular endothelial cell angiogenesis. As a result, inhibition of the GPR34-PI3K-AKT-NINJ1 axis significantly decreased microglial extracellular trap formation and neovascularisation by suppressing LysoPS-induced microglial inflammatory responses, both in vitro and in vivo. This study reveals the crucial role of apoptotic ganglion cells in activating microglial inflammation in PDR, thereby enhancing our understanding of the pathogenesis of retinal neovascularisation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520652 | PMC |
http://dx.doi.org/10.1186/s12974-024-03265-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!