A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bone labeling experiments and intraskeletal growth patterns in captive leopard geckos (Eublepharis macularius). | LitMetric

An understanding of the dynamics of bone growth is key to interpreting life-history parameters of vertebrates. In this study, we used fluorochrome labels in captive leopard geckos (Eublepharis macularius) to track bone growth and intraskeletal variability from embryonic to adult growth stages. Thirteen individuals were administered fluorochromes from pre-hatching to 4 years of age. The left tibia, fibula, femur, humerus, radius, and ulna were examined histologically and compared for differences in the number of labels within and between individuals at each sampled growth stage, and the amount of bone growth between labels was calculated. Results suggest that limb elements had differing growth rates; the fibula grew the fastest per day on average and the femur grew the slowest per day on average. All labels administered in ovo were still present in all limb elements in adults except for the tibia, suggesting growth marks are not lost in most elements and accurate calculations of growth rates could be performed in individuals up to 3 years old. All ex ovo labels were accounted for; however, when two fluorochromes were administered 3 weeks apart, the labels could not be differentiated from each other due to the new bone not being deposited at a quantifiable level. Overall, the tibia in leopard geckos is the least reliable limb bone to use for skeletochronology and the humerus, radius, and fibula preserve the longest growth record. This research highlights that, as in other extinct and extant animals, patterns of bone growth are not consistent across reptiles. This study adds to the growing body of knowledge on growth variability in reptiles.

Download full-text PDF

Source
http://dx.doi.org/10.1111/joa.14151DOI Listing

Publication Analysis

Top Keywords

bone growth
16
growth
12
leopard geckos
12
captive leopard
8
geckos eublepharis
8
eublepharis macularius
8
humerus radius
8
limb elements
8
growth rates
8
day average
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!