Nanocomposites composed of the cationic polypeptide ε-poly-l-lysine (ε-PL) and natural sodium montmorillonite (MMT) were prepared and evaluated. These MMT/ε-PL composites formed highly ordered nanostructures resembling natural nacreous layers by a simple process. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses confirmed that a small amount of ε-PL remarkably enhanced the MMT orientation in the composites. This MMT orientation-enhancing effect of ε-PL was more pronounced than that of poly(vinyl alcohol) (PVA), which is one of the most popular ingredients of MMT-based composites. The orientation enhancement provided by ε-PL was primarily driven by ionic interactions and responsible for high mechanical properties at low polymer content. This remarkable reinforcing effect of ε-PL on MMT at a low polymer content will help to develop high-performance and sustainable nacreous composites. In addition, it improves our understanding of the reinforcing mechanism of natural nacre, which exhibits excellent mechanical properties even with relatively small amounts of organic component.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.4c00451DOI Listing

Publication Analysis

Top Keywords

low polymer
12
polymer content
12
polypeptide ε-poly-l-lysine
8
remarkable reinforcing
8
mechanical properties
8
natural
5
ε-pl
5
nacre-inspired nanocomposites
4
nanocomposites natural
4
natural polypeptide
4

Similar Publications

Activation of caged functional RNAs by an oxidative transformation.

Chembiochem

December 2024

University of Minnesota, Department of Genetics, Cell Biology, and Development, MCB 5-130, 420 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.

RNA exhibits remarkable capacity as a functional polymer, with broader catalytic and ligand-binding capability than previously thought. Despite this, the low side chain diversity present in nucleic acids (two purines and two pyrimidines) relative to proteins (20+ side chains of varied charge, polarity, and chemical functionality) limits the capacity of functional RNAs to act as environmentally responsive polymers, as is possible for peptide-based receptors and catalysts. Here we show that incorporation of the modified nucleobase 2-thiouridine (2sU) into functional (aptamer and ribozyme) RNAs produces functionally inactivated polymers that can be activated by oxidative treatment.

View Article and Find Full Text PDF

Fenton reaction technology has worked well in water and wastewater treatment; however it is often limited by such problems as continuous external supply of HO, slow Fe/Fe cycle rate, high energy requirements, and maintenance of low pH during operation. Herein, a novel self-sufficient heterogeneous Fenton system based on Fe/MoS was designed, fabricated, and optimized to effectively address these problems. The combined presence of Fe and sulfur vacancies sites in MoS played a pivotal role in the generation of HOvia two-step single-electron reduction process without any energy consumption.

View Article and Find Full Text PDF

Highly sensitive aggregation-induced electrochemiluminescence sensor for cadmium detection in Ganoderma lucidum.

Food Chem

December 2024

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China. Electronic address:

Cadmium (Cd) pollution poses a major threat to food safety. Sensitive detection of Cd is of great significance for the life health. Herein, an aggregation-induced electrochemiluminescence (AIECL) sensor based on polymer dots (Pdots) is designed for Cd detection.

View Article and Find Full Text PDF

The Critical Isomerization Effect of Core Bromination on Nonfullerene Acceptors in Achieving High-Performance Organic Solar Cells with Low Energy Loss.

Adv Mater

December 2024

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Highly efficient nonfullerene acceptors (NFAs) for organic solar cells (OSCs) with low energy loss (E) and favorable morphology are critical for breaking the efficiency bottleneck and achieving commercial applications of OSCs. In this work, quinoxaline-based NFAs are designed and synthesized using a synergistic isomerization and bromination approach. The π-expanded quinoxaline-fused core exhibits different bromination sites for isomeric NFAs, namely AQx-21 and AQx-22.

View Article and Find Full Text PDF

Organophosphate pesticides can cause long-term neurological damage to humans. There is an urgent need to develop a more sensitive and efficient method for detecting trace amounts of organophosphorus pesticides in orange juice, particularly in the presence of interfering substances. This study developed a dispersive solid-phase extraction (DSPE) method using amorphous UiO-66 (aUiO-66) as an adsorbent for the detection of four organophosphate pesticides (fenthion, profenofos, fensulfothion, and chlorpyrifos) in orange juice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!