A comprehensive study of AFM stiffness measurements on inclined surfaces: theoretical, numerical, and experimental evaluation using a Hertz approach.

Sci Rep

INSERM, U955 IMRB, "Biology of the Neuromuscular System" Team, Univ Paris-Est Créteil, 94010, Créteil, France.

Published: October 2024

Atomic Force Microscopy (AFM) is a leading nanoscale technique known for its significant advantages in the analysis of soft materials and biological samples. Traditional AFM data analysis is often based on the Hertz model, which assumes perpendicular indentation of a planar sample. However, this assumption is not always valid due to the varying geometries of soft materials, whether natural, synthetic or biological. In this study, we present a new theoretical model that incorporates correction coefficients into Hertz's model to account for cone-like and spherical probes, and to consider local tilt at the probe-sample interface. We validate our model using finite element analysis (FEA) simulations and experimental AFM measurements on tilted polyacrylamide gels. Our results highlight the need to include local tilt at the probe-sample contact to ensure accurate AFM measurements. This represents a step forward in our understanding of the elastic properties at the surface of soft materials in the broadest sense.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519481PMC
http://dx.doi.org/10.1038/s41598-024-75958-1DOI Listing

Publication Analysis

Top Keywords

soft materials
12
local tilt
8
tilt probe-sample
8
afm measurements
8
afm
5
comprehensive study
4
study afm
4
afm stiffness
4
stiffness measurements
4
measurements inclined
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!