LncRNA BRE-AS1 regulates the JAK2/STAT3-mediated inflammatory activation via the miR-30b-5p/SOC3 axis in THP-1 cells.

Sci Rep

School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.

Published: October 2024

Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators in numerous biological processes, including macrophage-mediated inflammatory responses, which play a critical role in the progress of diverse diseases. This study focuses on the regulatory function of lncRNA brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in modulating the inflammatory activation of monocytes/macrophages. Employing the THP-1 cell line as a model, we demonstrate that lipopolysaccharide (LPS) treatment significantly upregulates BRE-AS1 expression. Notably, specific knockdown of BRE-AS1 via siRNA transfection enhances LPS-induced expression of interleukin (IL)-6 and IL-1β, while not affecting tumor necrosis factor (TNF)-α levels. This selective augmentation of pro-inflammatory cytokine production coincides with increased phosphorylation of Janus kinase (JAK)2 and signal transducer and activator of transcription (STAT)3. Furthermore, BRE-AS1 suppression results in the downregulation of suppressor of cytokine signaling (SOCS)3, an established inhibitor of the JAK2/STAT3 pathway. Bioinformatics analysis identified binding sites for miR-30b-5p on both BRE-AS1 and SOCS3 mRNA. Intervention with a miR-30b-5p inhibitor and a synthetic RNA fragment that represents the miR-30b-5p binding site on BRE-AS1 attenuates the pro-inflammatory effects of BRE-AS1 knockdown. Conversely, a miR-30b-5p mimic replicated the BRE-AS1 attenuation outcomes. Our findings elucidate the role of lncRNA BRE-AS1 in modulating inflammatory activation in THP-1 cells via the miR-30b-5p/SOCS3/JAK2/STAT3 signaling pathway, proposing that manipulation of macrophage BRE-AS1 activity may offer a novel therapeutic avenue in diseases characterized by macrophage-driven pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519362PMC
http://dx.doi.org/10.1038/s41598-024-77265-1DOI Listing

Publication Analysis

Top Keywords

inflammatory activation
12
bre-as1
10
lncrna bre-as1
8
thp-1 cells
8
bre-as1 modulating
8
modulating inflammatory
8
bre-as1 regulates
4
regulates jak2/stat3-mediated
4
inflammatory
4
jak2/stat3-mediated inflammatory
4

Similar Publications

Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives.

Gut Microbes

December 2025

Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.

Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.

View Article and Find Full Text PDF

Background: Ulcerative colitis patients who undergo ileal pouch-anal anastomosis (IPAA) without mucosectomy may develop inflammation of the rectal cuff (cuffitis). Treatment of cuffitis typically includes mesalamine suppositories or corticosteroids, but refractory cuffitis may necessitate advanced therapies or procedural interventions. This review aims to summarize the existing literature regarding treatments options for cuffitis.

View Article and Find Full Text PDF

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Objectives: To investigate the clinical and laboratory features of Sjögren's syndrome-associated autoimmune liver disease (SS-ALD) patients and identify potential risk and prognostic factors.

Methods: SS patients with or without ALD, who visited Tongji Hospital between the years 2011 and 2021 and met the 2012 American College of Rheumatology (ACR) classification criteria for Sjögren's syndrome, were retrospectively enrolled. The clinical and laboratory data of the enrolled patients, including autoimmune antibodies, were collected and analyzed with principal component analysis, correlation analysis, LASSO regression, and Cox regression.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!