During large geomagnetic storms, red auroras are typically observed from low-latitude countries such as Japan. The color arises from a specific emission line of oxygen atoms at high altitudes. However, during the May 10-11th 2024 superstorm, magenta auroras were observed above Japan instead of the typical red. In this study, we demonstrate that the magenta hue is created by a mixture of red (O) and a blue (N) aurora at extremely high altitudes. The blue color originates from the N first negative emission band caused by both resonant scattering of the upwelling molecular ions and heavy particle precipitation during the storm. This study is primarily driven by observations from citizen scientists, and confirmed and quantified with observations from spacecraft and modeling techniques. Additionally, we show that high solar activity, terrestrial season, and the preheating of the atmosphere all contribute to the occurrence of magenta aurora. This study showcases the value and richness of citizen science, and we anticipate that such approaches will become increasingly important in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519668PMC
http://dx.doi.org/10.1038/s41598-024-75184-9DOI Listing

Publication Analysis

Top Keywords

magenta aurora
8
citizen science
8
high altitudes
8
extended magenta
4
aurora revealed
4
revealed citizen
4
science large
4
large geomagnetic
4
geomagnetic storms
4
storms red
4

Similar Publications

During large geomagnetic storms, red auroras are typically observed from low-latitude countries such as Japan. The color arises from a specific emission line of oxygen atoms at high altitudes. However, during the May 10-11th 2024 superstorm, magenta auroras were observed above Japan instead of the typical red.

View Article and Find Full Text PDF

Idecabtagene vicleucel (Ide-cel) has demonstrated excellent efficacy and durable responses in patients with relapsed/refractory multiple myeloma (RRMM). However, the outcomes with ide-cel in patients with extramedullary disease (EMD) remain incompletely characterized. We included patients with RRMM treated with ide-cel between May 2021 and April 2023 across 11 US academic institutions.

View Article and Find Full Text PDF

Cellular RNA is asymmetrically distributed in cells and the regulation of RNA localization is crucial for proper cellular functions. However, limited chemical tools are available to capture dynamic RNA localization in complex biological systems with high spatiotemporal resolution. Here, we developed a new method for RNA proximity labeling activated by near-infrared (NIR) light, which holds the potential for deep penetration.

View Article and Find Full Text PDF

Background: Decreasing the amount of iodinated contrast is an important safety aspect of percutaneous coronary interventions (PCI), particularly in patients with a high risk of contrast-induced acute kidney injury (CI-AKI). Dynamic Coronary Roadmap (DCR) is a PCI navigation support tool projecting a motion-compensated virtual coronary roadmap overlay on fluoroscopy, potentially limiting the need for contrast during PCI.

Aims: This study investigates the contrast-sparing potential of DCR in PCI, compared to standard angiographic guidance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!