A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimal class of memory type imputation methods for time-based surveys using EWMA statistics. | LitMetric

Optimal class of memory type imputation methods for time-based surveys using EWMA statistics.

Sci Rep

Department of Quantitative Methods, School of Business, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.

Published: October 2024

Time-based surveys often experience missing data due to several reasons, like non-response or data collection limitations. Imputation methods play an essential role in incorporating these missing values to secure the accuracy and reliability of the survey outcomes. This manuscript proposes some optimal class of memory type imputation methods for imputing missing data in time-based surveys by utilizing exponentially weighted moving average (EWMA) statistics. The insights into the optimal conditions for incorporating our proposed methods are provided. A comprehensive examination of the proposed method utilizing simulated and real-life datasets is conducted. Comparative analyses against the existing imputation methods exhibit the superior performance of our methods, particularly in the scenarios characterized by developing trends and dynamic response patterns. The outcomes highlight the effectiveness of utilizing EWMA statistics into memory type imputation methods, displaying their flexibility to changing survey dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519609PMC
http://dx.doi.org/10.1038/s41598-024-73518-1DOI Listing

Publication Analysis

Top Keywords

imputation methods
20
memory type
12
type imputation
12
time-based surveys
12
ewma statistics
12
optimal class
8
class memory
8
missing data
8
methods
7
imputation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!