The pro-inflammatory enzyme cyclooxygenase 2 (COX-2) has been known to impart metastatic property to cancer cells. However, blocking of COX-2 with nonsteroidal anti-inflammatory drugs or COX-2-specific inhibitors has failed in clinical trials due to adverse effects associated with their prolonged use. We have previously shown that extracellular ATP (eATP), a major component of the tumor microenvironment, enhances COX-2 expression several-fold, both in macrophages and in various cancer cells, by acting on purinergic (P2) receptors. In this study, we show that blocking of P2 receptors significantly reduced tumor growth in a mouse model of lymphoma. Tumors were induced in mice through subcutaneous injection of syngeneic EL4 lymphoma cells. Various P2 receptor antagonists were injected within the tumors after they were palpable. The broad-spectrum P2 receptor antagonist, suramin, P2X7 receptor-specific antagonist, oATP, P2Y6 receptor-specific antagonist, MRS 2578, and P2Y12 receptor-specific antagonist, AR-C 69931, all showed significant arrest in tumor growth. Both suramin and AR-C 69931-treated tumors showed strong reduction in COX-2 expression and modulation of various metastatic markers. Disaggregated cells from AR-C 69931-treated tumors, when injected intravenously in naïve mice, did not exhibit metastasis in various tissues which was observed in mice injected with cells from saline-treated tumors. Our results show that blocking of P2 receptors is a therapeutic alternative to inhibit COX-2 expression, and thereby, arrest tumor progression and metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11302-024-10057-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!