Recent research underscores the pivotal role of cellular organelles, such as mitochondria, the endoplasmic reticulum, and lysosomes, in maintaining cellular homeostasis. Their dynamic interactions are critical for metabolic regulation and stress response. Analysis of organelle proteomes offers valuable insights into their functions in both physiology and disease. Traditional proteomic approaches to studying isolated organelles are now complemented by innovative methodologies focusing on inter-organelle interactions. This review examines the integration of advanced proximity labeling technologies, including TurboID and split-TurboID, which address the inherent limitations of traditional techniques and enable precision proteomics of suborganelle compartments and inter-organellar contact sites. These innovations have led to discoveries regarding organelle interconnections, revealing mechanisms underlying metabolic processes such as cholesterol metabolism, glucose metabolism, and lysosomal repair. In addition to highlighting the advancements in TurboID applications, this review delineates the evolving trends in organelle research, underscoring the transformative potential of these techniques to significantly enhance organelle-specific proteomic investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519719 | PMC |
http://dx.doi.org/10.4196/kjpp.2024.28.6.495 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!