AI Article Synopsis

  • The study investigated the effectiveness of a PLGA scaffold combined with nanohydroxyapatite and curcumin, loaded with adipose-derived stem cells, for healing mandibular bone defects in rats.
  • Forty rats were assigned to five treatment groups, and after 8 weeks, bone healing was evaluated through histomorphometry and mechanical tests, revealing significant improvements in the group treated with both stem cells and curcumin.
  • Results indicated that the bioengineered scaffold showed good porosity and healing properties, suggesting its potential for bone defect treatments, but further research is required in larger animal models to fully explore its therapeutic benefits.

Article Abstract

This study aimed to investigate the healing effect of a polylactic--glycolic acid (PLGA) scaffold containing nanohydroxyapatite (NHA) along with curcumin (CCM), loaded with adipose-derived mesenchymal stem cells (AD-MSCs), on mandibular bone defects. The designed PLGA scaffolds containing NHA were evaluated for their mechanical and structural properties. Forty rats were divided into five groups ( = 8) based on the treatment: Sham, PLGA scaffolds containing NHA, PLGA scaffolds containing NHA + CCM, PLGA scaffolds containing NHA + AD-MSCs, and PLGA scaffolds containing NHA + CCM + AD-MSCs. After 8 weeks' follow-up, mandible bones were isolated for histomorphometry evaluation. Data were analyzed using SPSS version 21, with -values <0.05 considered statistically significant. SEM evaluation showed that the designed nanocomposite scaffold had 80% porosity. Histomorphometry results indicated a significant difference in osteocyte, osteoblast, bone area, and vascular area parameters in the group treated with scaffolds loaded with AD-MSCs + CCM compared to the other groups ( < 0.05). The PLGA-containing NHA-CCM nanocomposite scaffold demonstrated good porosity and dispersion, suitable for treating bone defects. Rats treated with scaffolds containing AD-MSCs and CCM showed better therapeutic results than the other groups. Further research is needed to evaluate its anti-inflammatory, antioxidant properties, osteogenesis, and therapeutic effects in larger animal models.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.4c00608DOI Listing

Publication Analysis

Top Keywords

plga scaffolds
20
scaffolds nha
20
mandibular bone
8
nha ccm
8
plga
6
nha
6
scaffolds
5
enhanced mandibular
4
bone repair
4
repair poly
4

Similar Publications

Background: Given the risks associated with autologous bone transplantation and the limitations of allogeneic bone transplantation, scaffolds in bone tissue engineering that incorporate bioactive peptides are highly recommended. Teriparatide (TPTD) plays a significant role in bone defect repair, although achieving controlled release of TPTD within a bone tissue engineering scaffold remains challenging. This work reports a new approach for treatment of teriparatide using a water-in-oil-in-water (w/o/w) microspheres be equipped on gelatin (GEL)/Poly lactic-glycolic acid (PLGA)/attapulgite (ATP) scaffold.

View Article and Find Full Text PDF

Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects.

View Article and Find Full Text PDF

Poly (lactic-co-glycolic acid) (PLGA) is an important biomaterial for tissue defect repair, but its application in replacing missing brain tissue needs improvement. Mesenchymal stem cells (MSCs) have been used to treat various neurological diseases, but they face challenges when filling large tissue defects. The purpose of this study was to investigate the effects of PLGA combined with MSCs transplantation on brain structure and neural function in rats with traumatic brain injury (TBI), and explore its possible mechanism.

View Article and Find Full Text PDF

Poly(lactic-co-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (rac-MG).

View Article and Find Full Text PDF

The use of 3D-printed gene-activated bone grafts represents a highly promising approach in the fields of dentistry and orthopedics. Bioresorbable poly-lactic-co-glycolic acid (PLGA) scaffolds, infused with adenoviral constructs that carry osteoinductive factor genes, may provide an effective alternative to existing bone grafts for the reconstruction of extensive bone defects. This study aims to develop and investigate the properties of 3D scaffolds composed of PLGA and adenoviral constructs carrying the BMP2 gene (Ad-BMP2), both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!