(, SA) is one of the most common bacteria in nosocomial infections. Sensitive and efficient analysis of methicillin-resistance of SA is crucial for improving the nursing performance of pneumonia. However, methicillin-resistance analysis with favorable sensitivity and specificity in an enzyme-free manner remains a huge challenge. This paper presents the development of a new fluorescent biosensor for detecting gene using a triple-branch catalytic hairpin assembly (CHA) triggered DNAzyme switch-based DNA tweezer. The SA from the samples are immobilized on the plate's surface using the protein A antibody. The biosensor possesses several key features. Firstly, it utilizes dual signal amplification processes, specifically the triple-branch CHA and DNAzyme controlled DNA tweezer-based signal recycling, to enable detection on the plate. This design enhances the method's sensitivity, resulting in a low limit of detection of 1.5 fM. Secondly, the biosensor does not rely on enzymes for analysis, ensuring a high level of stability during target analysis. Lastly, the method demonstrates a remarkable selectivity by accurately distinguishing target sequences from non-target sequences. The proposed biosensor, which does not require enzymes and has a high level of sensitivity, offers a viable platform for the rapid and simple quantification of in SA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729337 | PMC |
http://dx.doi.org/10.4014/jmb.2409.09008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!