Loss in Pluripotency Markers in Mesenchymal Stem Cells upon Infection with .

J Microbiol Biotechnol

Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan.

Published: December 2024

The intracellular pathogen can inflict substantial damage on the host. Notably, Chlamydia infection is acknowledged for its precise modulation of diverse host signaling pathways to ensure cell survival, a phenomenon intricately connected to genetic regulatory changes in host cells. To monitor shifts in gene regulation within Chlamydia-infected cells, we employed mesenchymal stem cells (MSCs) as a naïve, primary cell model. Utilizing biochemical methods and imaging, our study discloses that acute Chlamydia infection in human MSCs leads to the downregulation of transcription factors Oct4, Sox2, and Nanog, suggesting a loss of pluripotency markers. Conversely, pluripotency markers in MSCs were sustained through treatment with conditioned medium from infected MSCs. Additionally, there is an augmentation in alkaline phosphatase activity, along with elevated Sox9 and CD44 mRNA expression levels observed during acute infection. A comprehensive screening for specific cell markers using touchdown PCR indicates an upregulation of mRNA for the early chondrogenesis gene Sox9 and a decrease in mRNA for the MSC marker vimentin. Real-time PCR quantification further corroborates alterations in gene expression, encompassing increased Sox9 and CD44 mRNA levels, alongside heightened alkaline phosphatase activity. In summary, the infection of MSCs with induces numerous genetic deregulations, implying a potential trend towards differentiation into chondrocytes. These findings collectively underscore a targeted impact of Chlamydia on the gene regulations of host cells, carrying significant implications for the final fate and differentiation of these cells.

Download full-text PDF

Source
http://dx.doi.org/10.4014/jmb.2406.06023DOI Listing

Publication Analysis

Top Keywords

pluripotency markers
12
loss pluripotency
8
mesenchymal stem
8
stem cells
8
chlamydia infection
8
host cells
8
alkaline phosphatase
8
phosphatase activity
8
sox9 cd44
8
cd44 mrna
8

Similar Publications

Nerve growth factor (NGF) is a neurotrophic factor usually involved in the survival, differentiation, and growth of sensory neurons and nociceptive function. Yet, it has been suggested to play a role in the pathogenesis of osteoarthritis (OA). Previous studies suggested a possible relationship between NGF and OA; however, the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

Microglia-like cells from patient monocytes demonstrate increased phagocytic activity in probable Alzheimer's disease.

Mol Cell Neurosci

December 2024

Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye. Electronic address:

Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by the accumulation of amyloid plaques, phosphorylated tau tangles and microglia toxicity, resulting in neuronal death and cognitive decline. Since microglia are recognized as one of the key players in the disease, it is crucial to understand how microglia operate in disease conditions and incorporate them into models. The studies on human microglia functions are thought to reflect the post-symptomatic stage of the disease.

View Article and Find Full Text PDF

Generation and characterization of three induced pluripotent stem cell lines for modeling coronary artery vasospasm.

Stem Cell Res

December 2024

Cardiology Section, Medical Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Radiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.

Coronary artery vasospasm (CAV) is characterized by transient constriction of epicardial coronary arteries leading to angina. Its disease mechanisms are multifactorial but has centered mostly on endothelial dysfunction and smooth muscle hyperreactivity. To facilitate the investigation of these mechanisms in cell culture, we generated and characterized three induced pluripotent stem cell (iPSC) lines from patients with CAV.

View Article and Find Full Text PDF

Generation of an induced pluripotent stem cell (iPSC) line (INNDSUi007-A) from a patient with Kennedy disease.

Stem Cell Res

December 2024

Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Jinan, Shandong, China. Electronic address:

Abnormal trinucleotide CAG repeat expansions in exon 1 of the Androgen Receptor (AR) gene has been identified as the cause of Kennedy disease (KD). We generated and characterized a human induced pluripotent stem cell (iPSC) line from peripheral blood mononuclear cells (PBMC) of a patient with genetically confirmed KD. The pluripotency of these iPSCs was verified by the expression of several pluripotency markers at both RNA and protein levels, as well as their capability to differentiate into all three germ layers.

View Article and Find Full Text PDF

Frontotemporal dementia with parkinsonism-17 is a neurodegenerative disease characterised by pathological aggregation of the tau protein with the formation of neurofibrillary tangles and subsequent neuronal death. The inherited form of frontotemporal dementia can be caused by mutations in several genes, including the MAPT gene on chromosome 17, which encodes the tau protein. As there are currently no medically approved treatments for frontotemporal dementia, there is an urgent need for research using in vitro cell models to understand the molecular genetic mechanisms that lead to the development of the disease, to identify targets for therapeutic intervention and to test potential drugs to prevent neuronal death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!