Introduction: Social participation for emerging symbolic communicators on the autism spectrum is often restricted. This is due in part to the time and effort required for both children and partners to use traditional augmentative and alternative communication (AAC) technologies during fast-paced social routines. Innovations in artificial intelligence provide the potential for context-aware AAC technology that can provide just-in-time communication options based on linguistic input from partners to minimize the time and effort needed to use AAC technologies for social participation.

Methods: This preliminary study used an alternating treatment design to compare the effects of a context-aware AAC prototype with automated cloze phrase response options to traditional AAC for supporting three young children who were emerging symbolic communicators on the autism spectrum in participating within a social routine.

Results: Visual analysis and effect size estimates suggest the context-aware AAC condition resulted in increases in linguistic participation, vocal approximations, and visual attention for all three children.

Conclusion: While this study was only an initial exploration and results are preliminary, context-aware AAC technologies have the potential to enhance participation and communication outcomes for young emerging symbolic communicators on the autism spectrum and more research is needed.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000542304DOI Listing

Publication Analysis

Top Keywords

autism spectrum
16
context-aware aac
16
emerging symbolic
12
symbolic communicators
12
communicators autism
12
aac technologies
12
augmentative alternative
8
alternative communication
8
cloze phrase
8
phrase response
8

Similar Publications

Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder and its underlying neuroanatomical mechanisms still remain unclear. The scaled subprofile model of principal component analysis (SSM-PCA) is a data-driven multivariate technique for capturing stable disease-related spatial covariance pattern. Here, SSM-PCA is innovatively applied to obtain robust ASD-related gray matter volume pattern associated with clinical symptoms.

View Article and Find Full Text PDF

Expanding the phenotype and genotype spectrum of TAOK1 neurodevelopmental disorder and delineating TAOK2 neurodevelopmental disorder.

Genet Med

December 2024

Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK; Division of Clinical Medicine, University of Sheffield, Sheffield, UK. Electronic address:

Purpose: The TAOK proteins are a group of serine/threonine-protein kinases involved in signalling pathways, cytoskeleton regulation, and neuronal development. TAOK1 variants are associated with a neurodevelopmental disorder (NDD) characterized by distinctive facial features, hypotonia and feeding difficulties. TAOK2 variants have been reported to be associated with autism and early-onset obesity.

View Article and Find Full Text PDF

Foreign body ingestion is sometimes missed during the initial evaluation of a patient with a psychiatric disorder in the emergency department. This is often due to a lack of awareness regarding the need for thorough physical and diagnostic imaging examinations. Additionally, the management of ingested foreign bodies is often controversial.

View Article and Find Full Text PDF

Objective: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that emerges in early childhood and is characterized by difficulties in social communication, repetitive behaviors, and restricted interests. The Ras homolog (Rho)/Rho-kinase signaling pathway plays a critical role in maintaining synaptic structure and function, as it regulates the actin cytoskeleton. This study aims to investigate the expression of the Ras homolog (Rho) family member A (), Rho-kinase 1 (), and Rho-kinase 2 () genes within this pathway in relation to ASD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!