The growing concerns for environmental sustainability and the need for eco-friendly practices in the oil and gas industry have sparked the exploration and development of biodegradable drilling fluids. This review highlights the impact of biodegradable waste additives on drilling fluid properties and their cooperation in minimizing the environmental concerns related to drilling fluid disposals. The examined properties include plastic viscosity (PV), yield point (YP), mud weight (MW), fluid loss, and gel strength. The highest rate of PV (63 cP) and YP (109 lb/100 ft) was attained by using 4% mandarin peel powder (MPP) while using 3% medium broad bean peel powder (MBBPP) and 0.3% prosopis farcta (PF) showed the lowest PV (4 cP) and YP (5 lb/100 ft), respectively. Also, the viscosity changed as the particle sizes were changed using wheat nano-biopolymer at 0.5, 1, and 2%. Besides, the base sample had a linear relationship between shear rate and shear stress. However, in the presence of biodegradable particles, the viscosity decreased by increasing the shear rate. In addition, PV and YP were increased using wheat nano-biopolymer, while fluid loss and mud cake thickness were reduced. Further, the highest YP (i.e., 19 Pa) was attained by applying 50% FeO nanoparticles derived from olive leaves. In comparison, the lowest mud cake thickness is observed by 1% (i.e., 1.81 mm), and the lowest filtration loss was 46.6% at the same concentration. The findings indicated that biodegradable waste additives provide an eco-friendly and cost-effective solution for improving the performance of oil- and water-based drilling fluid properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123007 | DOI Listing |
ACS Earth Space Chem
January 2025
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Naturally occurring bedded salt deposits are considered robust for the permanent disposal of heat-generating nuclear waste due to their unique physical and geological properties. The Brine Availability Test in Salt (BATS) is a US-DOE Office of Nuclear Energy funded project that uses heated borehole experiments underground (∼655 meters depth) at the Waste Isolation Pilot Plant (WIPP) in the bedded salt deposits of the Salado Formation to investigate the capacity for safe disposal of high-level, heat generating nuclear waste in salt. Uncertainties associated with brine mobility near heat-generating waste motivates the need to characterize the processes and sources of brine in salt deposits.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Petroleum Engineering, School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan.
Geothermal energy, oil industry, and underground gas storage technology require deep drilling. Although oil-based drilling fluids have been widely used, they cause environmental issues. Environmentally friendly Aphronic fluid has emerged as an alternative to oil-based drilling fluid.
View Article and Find Full Text PDFACS Omega
January 2025
School of Earth Sciences, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
In recent years, the Telaaobao Mineral Area in the Northwestern Ordos Basin has been newly discovered as a uranium mineralization area with its ore-bearing target layer located within the Lower Cretaceous Huanhe Formation, belonging to a new area and a new layer, and has great uranium deposit formation potential. In order to deeply study the issues of the ore-bearing target in this area, such as the petrology, mineralogy, and uranium mineralization of the ore-bearing sandstone, based on the data from field geological investigation and drill core logging, the petrological characteristics of the ore-bearing sandstone of the target layer are preliminarily interpreted using a polarizing microscope and a scanning electron microscope, and the uranium mineral composition, uranium occurrence state, and uranium deposit mineralization are investigated through the electron probe microanalysis technique in this paper. The results show that the target layer sandstone in the study area has the characteristics of proximal deposit and has undergone significant epigenetic alteration and transformation, producing favorable conditions for uranium- and oxygen-containing water transportation and uranium mineralization.
View Article and Find Full Text PDFACS Omega
January 2025
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
For the purpose of efficient temporary plugging and self-removal of the plugging of reservoir formations, the thermally induced expandable and acid-generating temporary plugging agent (TAPA) was prepared with acrylonitrile (AN), methacrylic acid (MAA), ,-dimethylacrylamide (DMAA), and butyl acrylate (BA) as the shell monomers as well as the carboxylate esters with high boiling points as the core material. The TAPA was structurally characterized, and the properties were studied. The results showed that the TAPA had a good spherical structure with a median particle size (D50) of 16.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Metallurgy & Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Sindh 76062, Pakistan.
For optimizing the drilling efficiency, nanoparticles (NPs) specifically nanometal oxides have been used in water-based drilling fluids (WBDF). Nano metal oxides improve the rheological and filtration characteristics of the WBDF. However, dispersion instability among pristine nano metals shrinks the performance of the nanometal oxides due to high surface energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!