Drug repurposing in status epilepticus.

Epilepsy Behav

Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK. Electronic address:

Published: December 2024

The treatment of status epilepticus (SE) has changed little in the last 20 years, largely because of the high risks and costs of new drug development for SE. Moreover, SE poses specific challenges to drug development, such as patient diversity, logistical hurdles, and the need for acute treatment strategies that differ from chronic seizure prevention. This has reduced the appetite of industry to develop new drugs in this area. Drug repurposing is an attractive approach to address this unmet need. It offers significant advantages, including reduced development time, lower costs, and higher success rates, compared to novel drug development. Here I demonstrate how novel methods integrating biological knowledge and computational methods can be applied to drug repurposing in status epilepticus. Biological approaches focus on addressing mechanisms underlying drug resistance in SE (using for example ketamine, tacrolimus and safinamide) and longer-term consequences (using for example omaveloxolone, celecoxib and losartan). Additionally, artificial intelligence platforms, such as ChatGPT, can rapidly generate promising drug lists, while in silico methods can analyze gene expression changes to predict molecular targets. Combining AI and in silico approaches has identified several candidate drugs, including metformin, sirolimus and riluzole, for SE treatment. Despite the promise of repurposing, challenges remain, such as intellectual property issues and regulatory barriers. Nonetheless, drug repurposing presents a viable solution to the high costs and slow progress of traditional drug development for SE. This paper is based on a presentation made at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures, in April 2024.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yebeh.2024.110109DOI Listing

Publication Analysis

Top Keywords

drug repurposing
16
status epilepticus
16
drug development
16
drug
10
repurposing status
8
development
5
status
4
epilepticus
4
epilepticus treatment
4
treatment status
4

Similar Publications

Repurposing the familiar: Future treatment options against chronic kidney disease.

J Pharm Pharmacol

January 2025

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India.

Objectives: Chronic kidney disease (CKD) is a serious health issue with rising morbidity and mortality rates. Despite advances in understanding its pathophysiology, effective therapeutic options are limited, necessitating innovative treatment approaches. Also, current frontline treatments that are available against CKD are not uniformly effective and often come with significant side effects.

View Article and Find Full Text PDF

A novel non-invasive murine model for rapidly testing drug activity via inhalation administration against .

Front Pharmacol

January 2025

State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.

The efficacy of many compounds against is often limited when administered via conventional oral or injection routes due to suboptimal pharmacokinetic characteristics. Inhalation-based delivery methods have been investigated to achieve high local therapeutic doses in the lungs. However, previous models, typically employing wild-type strains, were intricate, time-consuming, labor-intensive, and with poor reproducibility.

View Article and Find Full Text PDF

Background: Analyzing disease-linked genetic variants via expression quantitative trait loci (eQTLs) is important for identifying potential disease-causing genes. Previous research prioritized genes by integrating Genome-Wide Association Study (GWAS) results with tissue- level eQTLs. Recent studies have explored brain cell type-specific eQTLs, but they lack a systematic analysis across various Alzheimer's disease (AD) GWAS datasets, nor did they compare effects between tissue and cell type levels or across different cell type-specific eQTL datasets.

View Article and Find Full Text PDF

Repurposing of phosphodiesterase-5 inhibitor sildenafil as a therapeutic agent to prevent gastric cancer growth through suppressing c-MYC stability for IL-6 transcription.

Commun Biol

January 2025

Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Phosphodiesterase-5 (PDE5) inhibitors have shown promise as anti-cancer agents in malignancies. However, their specific effects on gastric cancer (GC) and the underlying mechanisms remain elusive. Our aim was to investigate this by combining evidence from population-based studies with data obtained from in vivo and in vitro experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!