Nearly one-third of countries worldwide have reported cases of Dengue virus (DENV) and Zika virus (ZIKV) infections, highlighting the significant threat these viruses pose to global public health. As members of the Flavivirus genus within the Flaviviridae family, DENV and ZIKV have demonstrated the ability to infect a wide range of cell lines from multiple species in vitro. However, the range of susceptible animal models is notably limited, and field studies indicate that their capacity to infect host organisms is highly restricted, with a very narrow range of target cells in vivo. The virus's ability to hijack host cellular machinery plays a crucial role in determining its cellular and species specificity. In this review, we examine how DENV and ZIKV exploit host cells to facilitate their replication, offering new insights that could inform the development of antiviral drugs and therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virol.2024.110276 | DOI Listing |
Immunology
January 2025
The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Many virus species, including Ebola virus, Marburg virus, SARS-CoV-2, dengue virus (DENV) and Zika virus (ZIKV), exploit CD209 and CD209L as alternative or attachment receptors for viral cis- or trans-infection. Thus, CD209 and CD209L may be critical targets for the development of therapeutic monoclonal blocking antibody drugs to disrupt the infection process caused by multiple viruses. Here, we produced a human chimeric monoclonal blocking antibody that simultaneously blocks CD209 and CD209L, namely 7-H7-B1.
View Article and Find Full Text PDFRev Med Virol
January 2025
Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China.
Zika virus (ZIKV) and dengue virus (DENV) are two major mosquito-borne flaviviruses that pose a significant threat to the global public health system, particularly in tropical regions. The clinical outcomes related to these viral pathogens can vary from self-limiting asymptomatic infections to various forms of life-threatening pathological conditions such as haemorrhagic disorders. In addition to the direct effects of the viral pathogens, immune processes play also a significant function in the development of diseases mediated by ZIKV and DENV.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia.
Background: Gestational Zika virus (ZIKV) infection is associated with the development of congenital Zika syndrome (CZS), which includes microcephaly and fetal demise. The magnitude and quality of orthoflavivirus-specific humoral immunity have been previously linked to the development of CZS. However, the role of ZIKV NS1-specific humoral immunity in mothers and children with prenatal ZIKV exposure and CZS remains undefined.
View Article and Find Full Text PDFJ Virol
December 2024
1Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Flaviviruses utilize the cellular endoplasmic reticulum (ER) for all aspects of their lifecycle. Genome replication and other viral activities take place in structures called replication organelles (ROs), which are invaginations induced in the ER membrane. Among the required elements for RO formation is the biogenesis of viral nonstructural proteins NS4A and NS4B.
View Article and Find Full Text PDFVirol Sin
December 2024
Department of Medical Laboratory Science, University of Maiduguri, College of Medical Sciences, P.M.B. 1069, Maiduguri, Nigeria. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!