Emerging Chirality and Moiré Dynamics in Twisted Layered Material Heterostructures.

ACS Nano

School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel.

Published: November 2024

Moiré superstructures arising at twisted 2D interfaces have recently attracted the attention of the scientific community due to exotic quantum states and unique mechanical and tribological behaviors that they exhibit. Here, we predict the emergence of chiral distortions in twisted layered interfaces of finite dimensions. This phenomenon originates in intricate interplay between interfacial interactions and contact boundary constraints. A metric termed the fractional chiral area is introduced to quantify the overall chirality of the moiré superstructure and to characterize its spatial distribution. Despite the equilibrium nature of the discovered energetic and structural chirality effects, they are shown to be manifested in the twisting dynamics of layered interfaces, which demonstrates a continuous transition from stick-slip to smooth rotation with no external trigger.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c05022DOI Listing

Publication Analysis

Top Keywords

chirality moiré
8
twisted layered
8
layered interfaces
8
emerging chirality
4
moiré dynamics
4
dynamics twisted
4
layered material
4
material heterostructures
4
heterostructures moiré
4
moiré superstructures
4

Similar Publications

Metrology with a twist: probing and sensing with vortex light.

Light Sci Appl

January 2025

School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa.

Optical metrology is a well-established subject, dating back to early interferometry techniques utilizing light's linear momentum through fringes. In recent years, significant interest has arisen in using vortex light with orbital angular momentum (OAM), where the phase twists around a singular vortex in space or time. This has expanded metrology's boundaries to encompass highly sensitive chiral interactions between light and matter, three-dimensional motion detection via linear and rotational Doppler effects, and modal approaches surpassing the resolution limit for improved profiling and quantification.

View Article and Find Full Text PDF

A bifunctional coumarin-based CD probe for chiral analysis of amino acids in aqueous solution.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States. Electronic address:

Amino acids play important roles in human pathology and physiology and the qualitative and quantitative determination of chiral amino acids in humans and mammals also has important impacts on the life sciences. Therefore, the introduction of artificial probes to assess the concentrations and enantiomeric compositions [ee = ([D] - [L])/([D] + [L])] of amino acids in aqueous solution is necessary in understanding certain biological processes and diagnosing and treating diseases. Herein, a bifunctional achiral coumarin probe (Br-Coumarin) is reported to determine the absolute configuration, ee value, and concentration of 16 amino acids in THF/HO = 1/4 solution at micromolar concentrations.

View Article and Find Full Text PDF

Chalcogenides are the most important infrared nonlinear optical (NLO) material candidates, and the exploration of high-performance ones is attractive and challengeable. Hitherto, there is no NLO scandium (Sc) chalcogenides experimentally studied. Here, new quaternary Sc thiophosphate CsScPS (CSPS) was synthesized by the facile metal oxide-boron-sulfur/reactive flux hybrid solid-state method.

View Article and Find Full Text PDF

Metal-organic gels (MOGs) are a type of supramolecular complex that have become highly intriguing due to their synergistic combination of inorganic and organic elements. We report the synthesis and characterization of a Ni-directed supramolecular gel using chiral amino acid L-DOPA (3,4-dihydroxy phenylalanine) containing ligand, which coordinates with Ni(II) to form metal-organic gels with exceptional properties. The functional Ni(II)-gel was synthesized by heating nickel(II) acetate hexahydrate and the L-DOPA containing ligand in DMSO at 70 °C.

View Article and Find Full Text PDF

Mapping the local ambidextrous chirality in thin films of N phase by circular dichroism spectra.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, University of Hull, Hull HU6 7RX, UK. Electronic address:

Circular dichroism mapping (CDM) method was introduced by utilizing the highly collimated light beam of synchrotron radiation (SR) available at Diamond Light Source B23 beamline for scanning the thin films of the N phase. We apply SR-CDM to two achiral dimeric materials exhibiting the N phase: symmetric DTC5C9 and dissymmetric DTC5C9CB. The SR-CDM measurements directly capture the chiral information in the local N domains, providing the ultimate complement to the theoretical predictions of the helical structures: the spontaneous symmetry breaking in N phase is ambidextrous.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!