Diabetes has currently acquired the status of epidemic worldwide, and among its various pathological consequences like retinopathy and nephropathy, bone fragility fractures from diabetic osteopathy occurs in later stages and is equally destructive. Chronic hyperglycemia culminates into deteriorating microvasculature and quality of bone, making it prone to fractures. Among these, hip fractures are most common, especially in older diabetic patients apart from underlying neuropathy. Our study is an attempt to ameliorate hip fragility fracture and nerve trauma with electrical stimulation as an interface in a chronic diabetic rat model. We have fabricated reduced graphene oxide-substituted hydroxyapatite as an electroactive bone substitute and incorporated it into chitosan gelatin cryogels. The reduction of graphene oxide during sintering of hydroxyapatite imparts higher potential to the fabricated composite in dealing with problem at question. The cryogels depicted optimum biocompatibility and enhanced mineralization after ectopic subcutaneous implantation in rats. The therapeutic potency of composite cryogels was evaluated in a hip fracture model with compression to the sciatic nerve in diabetic rats, mimicking the severe clinical trauma. The presence of cryogels in the femoral neck canal coupled with electrical stimulation and biochemical factors significantly improved bone regeneration in diabetic rats as depicted with microcomputed tomography analysis and histology images. The application of electrical stimulation also ameliorated the nerve trauma observed with 70% improvement in electrophysiological parameters such as the compound muscle action potential with combinatorial therapy. We therefore report the successful implication of a multitarget therapy in a chronic diabetic rat model unraveling the bone-nerve crosstalk with electroactive smart cryogels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c10206DOI Listing

Publication Analysis

Top Keywords

rat model
12
electrical stimulation
12
reduced graphene
8
graphene oxide-substituted
8
bone-nerve crosstalk
8
fragility fracture
8
nerve trauma
8
chronic diabetic
8
diabetic rat
8
diabetic rats
8

Similar Publications

Effects of Enriched Environment on Barrel Cortex and Hippocampus Function following Somatosensory Damage in Rat.

Physiol Behav

December 2024

Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. Electronic address:

Objectives: This study investigated the effects of environmental enrichment (EE) on the behavior and histological alterations of rats with barrel cortex damage.

Methods: Forty-eight adult male rats were divided into Control (Ctrl), Lesion, Lesion+EE.S (Lesion+Standard Enriched Environment, and Lesion+EE.

View Article and Find Full Text PDF

Long-term impact of congenital Zika virus infection on the rat hippocampus: Neuroinflammatory, glial alterations and sex-specific effects.

Brain Res

December 2024

Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Congenital Zika Syndrome (CZS) is a condition that arises when a neonate presents with abnormalities resulting from Zika virus infection during gestation. While microcephaly is a prominent feature of the syndrome, other forms of brain damage are also observed, often accompanied by significant neurological complications. It is therefore essential to investigate the long-term effects of CZS, with special attention to sex differences, particularly concerning hippocampal function, given its vulnerability to viral infections.

View Article and Find Full Text PDF

Predicting upper limb motor recovery in subacute stroke patients via fNIRS-measured cerebral functional responses induced by robotic training.

J Neuroeng Rehabil

December 2024

Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, 400044, P.R. China.

Background: Neural activation induced by upper extremity robot-assisted training (UE-RAT) helps characterize adaptive changes in the brains of poststroke patients, revealing differences in recovery potential among patients. However, it remains unclear whether these task-related neural activities can effectively predict rehabilitation outcomes. In this study, we utilized functional near-infrared spectroscopy (fNIRS) to measure participants' neural activity profiles during resting and UE-RAT tasks and developed models via machine learning to verify whether task-related functional brain responses can predict the recovery of upper limb motor function.

View Article and Find Full Text PDF

KLF6 silencing attenuates MCAO-induced brain injury and cognitive dysfunction via targeting ferroptosis and activating the Nrf2/HO-1 pathway.

Hum Exp Toxicol

December 2024

Department of neurology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China. Hubei Sizhen Laboratory, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China.

Introduction: The incidence of cerebral ischemia-reperfusion injury (I/R) is complex which seriously threatens the life safety of patients. Neither its prevention nor its treatment has been successful so far. Proteins that bind to DNA and belong to the C2/H2 zinc finger family are known as Krüppel-like factors (KLFs).

View Article and Find Full Text PDF

Reversal of the motivational effects of tetrabenazine by NMDA receptor blockade.

Neuropharmacology

December 2024

- Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.

Background: Apathy is a syndrome of decreased goal-directed activity, one of the main features of different brain disorders. Despite its high prevalence and life-threatening potential, there are currently very few options for its pharmacological treatment, which may be related to the lack of valid animal models.

Aims: The vesicular monoamine transporter 2 inhibitor tetrabenazine (TBZ) was used in this study to model apathy-related behavior in pathologies linked to a depletion of dopamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!