Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize () LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, La. However, the monomer prefers Nd and Sm, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for Pr and Nd by 100-fold. Selective dimerization enriches high-value Pr and Nd relative to low-value La and Ce in an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD's preference for Nd and Sm. Our results suggest that LanD's unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551332PMC
http://dx.doi.org/10.1073/pnas.2410926121DOI Listing

Publication Analysis

Top Keywords

periplasmic protein
8
separation factors
8
protein
6
modulating metal-centered
4
dimerization
4
metal-centered dimerization
4
lanthanide
4
dimerization lanthanide
4
lanthanide chaperone
4
chaperone protein
4

Similar Publications

Deciphering the molecular basis of lipoprotein recognition and transport by LolCDE.

Signal Transduct Target Ther

December 2024

Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.

Outer membrane (OM) lipoproteins serve vital roles in Gram-negative bacteria, contributing to their pathogenicity and drug resistance. For these lipoproteins to function, they must be transported from the inner membrane (IM), where they are assembled, to the OM by the ABC transporter LolCDE. We have previously captured structural snapshots of LolCDE in multiple states, revealing its dynamic conformational changes.

View Article and Find Full Text PDF

RcsF-independent mechanisms of signaling within the Rcs phosphorelay.

PLoS Genet

December 2024

Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America.

The Rcs (regulator of capsule synthesis) phosphorelay is a conserved cell envelope stress response mechanism in enterobacteria. It responds to perturbations at the cell surface and the peptidoglycan layer from a variety of sources, including antimicrobial peptides, beta-lactams, and changes in osmolarity. RcsF, an outer membrane lipoprotein, is the sensor for this pathway and activates the phosphorelay by interacting with an inner membrane protein IgaA.

View Article and Find Full Text PDF

Biomimetic Pseudopeptides to Decipher the Interplay Between Cu and Methionine-Rich Domains in Proteins.

Chemistry

December 2024

CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble, IRIG/SYMMES, FRANCE.

Maintaining tightly copper homeostasis is crucial for the survival of all living organisms, in particular microorganisms like bacteria. They have evolved a number of proteins to capture, transport and deliver Cu(I), while avoiding Fenton-like reactions. Some Cu proteins exhibit methionine-rich (Met-rich) domains, whose role remains elusive.

View Article and Find Full Text PDF

Conformational changes in and translocation of small proteins: insights into the ejection mechanism of podophages.

J Virol

December 2024

Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China.

Unlabelled: Podophage tails are too short to span the cell envelope during infection. Consequently, podophages initially eject the core proteins within the head for the formation of an elongated trans-envelope channel for DNA ejection. Although the core proteins of bacteriophage T7 have been resolved at near-atomic resolution, the mechanisms of core proteins and DNA ejection remain to be fully elucidated.

View Article and Find Full Text PDF

Objectives: Pseudomonas aeruginosa, identified as an ESKAPE pathogen, contributes to severe clinical diseases worldwide and despite its prevalence an effective vaccine or treatment remains elusive. Numerous computational methods are being employed to target hypothetical proteins (HPs). Presently, no studies have predicted multi-epitope vaccines for these HPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!