AI Article Synopsis

  • Chitosan (CS) is a polysaccharide with beneficial properties but has limitations in solubility and antioxidant activity, which can be improved by grafting polyphenols onto it.
  • The study successfully conjugated chlorogenic acid (CGA) and polydatin (PLD) to chitosan using a redox system, confirming the effectiveness of the bonding with various analytical techniques.
  • The resulting polyphenol-chitosan conjugates exhibited enhanced antioxidant properties and strong antibacterial effects against several pathogenic bacteria, suggesting potential applications in food preservation.

Article Abstract

Background: Chitosan (CS), an abundant alkaline polysaccharide, is valued for its biocompatibility, non-toxicity, and antibacterial properties. However, its limited solubility and modest antioxidant activity constrain its utility. Grafting polyphenols onto chitosan through the use of grafting reactions can enhance both the solubility and bioactivity of chitosan. Among the techniques employed, the free radical grafting method is favored for its simplicity, environmental sustainability, and its effectiveness in preserving biological activity.

Results: In this study, chlorogenic acid (CGA) and polydatin (PLD) were conjugated successfully to chitosan by a Vc/HO redox system. Analytical techniques such as ultraviolet-visible (UV-visible) spectroscopy, fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and proton nuclear magnetic resonance (H NMR) were employed to confirm the formation of covalent bonding between the polyphenol molecules and the chitosan backbone. The novel conjugates displayed superior antioxidant properties in comparison with pristine chitosan, as evidenced by their enhanced 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical, and hydroxyl radical scavenging capacities, and Fe reducing power. Both CGA-CS and PLA-CS exhibited excellent lipid and protein oxidation inhibition capabilities. Furthermore, the conjugates were shown to have significant antibacterial effects against four common pathogenic bacteria: Pseudomonas fluorescens, Pseudomonas aeruginosa, Pseudomonas putida, and Staphylococcus aureus (P < 0.05).

Conclusion: The newly synthesized water-soluble polyphenol-chitosan conjugates demonstrated remarkable biological activity, particularly CGA-CS. This study offers new insights and a strong theoretical foundation for developing natural food preservation materials with potential applications in the food industry. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.13989DOI Listing

Publication Analysis

Top Keywords

conjugates antibacterial
8
lipid protein
8
protein oxidation
8
chitosan
6
water-soluble chlorogenic
4
chlorogenic acid-chitosan
4
acid-chitosan polydatin-chitosan
4
polydatin-chitosan conjugates
4
antibacterial activity
4
activity inhibition
4

Similar Publications

Resistance by bacteria to available antibiotics is a threat to human health, which demands the development of new antibacterial agents. Considering the prevailing conditions, we have developed a library of new naphthalimide-coumarin moieties as broad-spectrum antibacterial agents to fight against awful drug resistance. Preliminary studies indicate that compounds and display excellent antibacterial activity against , exceeding the performance of marketed drug amoxicillin.

View Article and Find Full Text PDF

Porphyrin's excellent biocompatibility and modifiability make it a widely studied photoactive material. However, its large π-bond conjugated structure leads to aggregation and precipitation in physiological solutions, limiting the biomedical applications of porphyrin-based photoactive materials. It has been demonstrated through research that fabricating porphyrin molecules into nanoscale covalent organic frameworks (COFs) structures can circumvent issues such as poor dispersibility resulting from hydrophobicity, thereby significantly augmenting the photoactivity of porphyrin materials.

View Article and Find Full Text PDF

The development of new antibiotics with unique mechanisms of action is paramount to combating the growing threat of antibiotic resistance. Recently, based on inspiration from natural products, an asymmetrical polyacetylene core structure was examined for its bioactivity and found to have differential specificity for different bacterial species based on the substituents around the conjugated alkyne. This research further probes the structural requirements for bioactivity through a systematic synthesis and investigation of new compounds with variable carbon chain length, alkynyl subunits, and alcohol substitution.

View Article and Find Full Text PDF

In the face of rising the threat of resistant pathogens, antimicrobial peptides (AMPs) offer a viable alternative to the current challenge due to their broad-spectrum activity. This study focuses on enhancing the efficacy of temporin-SHa derived NST-2 peptide (), which is known for its antimicrobial and anticancer activities. We synthesized new analogs of using three strategies, i.

View Article and Find Full Text PDF

Aminoglycosides are one of the first classes of natural antibiotics which have not lost relevance due to their broad spectrum of action against Gram-positive, Gram-negative bacteria and mycobacteria. The high growth rate of antimicrobial resistance (AMR) together with the severe side effects of aminoglycosides increase the importance of developing improved semisynthetic derivatives. In this work, we proposed a synthetic route to new tobramycin derivatives modified at the 6″-position with aminoalkylamine or guanidinoalkylamine residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!