A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enantiomorphic Site-Assisted Chain End Control Stereospecific Alternating Copolymerization of Chiral Cyclic Diesters. | LitMetric

Enantiomorphic Site-Assisted Chain End Control Stereospecific Alternating Copolymerization of Chiral Cyclic Diesters.

Angew Chem Int Ed Engl

State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Published: October 2024

Stereospecific alternating copolymerization of different chiral cyclic esters is one feasible approach to enrich the structural diversity of copolyesters and tailor their properties. However, dramatically different reactivities of different cyclic esters let a perfectly stereospecific alternating polymerization of these cyclic esters be a challenge, thus the catalyst is required to balance their reactivities. Herein, a remarkable enantiomorphic site effect on chain end control was discovered and successfully utilized to balance the reactivities of highly reactive S, S-lactide (S, S-LA) and low reactive R, R-ethylglycolide (R, R-EG)/R, R-propylglycolide (R, R-PG) during their heterospecific alternating copolymerization. The enantiomorphic site of R, R-SalenAl complex can increase the relative reactivity of R, R-EG/R, R-PG and suppress that of S, S-LA, then a perfectly alternating sequence of the copolymer of S, S-LA and R, R-EG/R, R-PG can be achieved (P=0.96/0.91); inversely, using S, S-SalenAl complex, the significant enantiomorphic site effect enlarges the reactivity difference of two monomers, the alternating level was just 0.70/0.68 even to 0.61. Poly(S, S-LA-alt-R, R-EG) with a high alternating regularity exhibits lower glass transition temperatures and a dramatically higher elongation at break (ϵ=449±51 % (P=0.96) vs ϵ=6±1% (P=0.70)).

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202420316DOI Listing

Publication Analysis

Top Keywords

stereospecific alternating
12
alternating copolymerization
12
cyclic esters
12
enantiomorphic site
12
chain control
8
copolymerization chiral
8
chiral cyclic
8
balance reactivities
8
r-eg/r r-pg
8
alternating
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!