The catalytic film of a flexible Al-air battery is generally a brittle film formed by brushing a slurry onto the surface of carbon cloth. Fatigue bending can easily lead to cracking of the catalytic film and shedding of the active material. This study innovatively proposes a novel grid-structured catalytic layer prepared by electrohydrodynamic printing. Experiments have verified that, compared with traditional catalytic films, the grid-structured catalytic layer exhibits excellent bending resistance. After 10 000 fatigue bending cycles, its relative resistance is ≈1/9 that of the traditional catalytic film. The printed grid-structured catalytic layer is applied to a flexible Al-air battery, which maintains a power density retention rate as high as 92% after the same number of bending cycles. Compared to traditional catalytic films, the electrodynamically printed grid-structured catalytic layer proposed in this study demonstrates both excellent electrochemical performance and bending resistance. This advancement holds significant importance for the development and application of flexible metal-air batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202400875 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!