The heterotrimeric G-protein αo subunit is ubiquitously expressed in the CNS as two splice variants Gα and Gα, regulating various brain functions. Here, we investigated the effect of single Gα, Gα, and double Gα knockout on the postnatal development of the murine mossy fiber tract, a central pathway of the hippocampal connectivity circuit. The size of the hippocampal synaptic termination fields covered by mossy fiber boutons together with various fiber length parameters of the tract was analyzed by immunohistochemical staining of the vesicular Zinc transporter 3 (ZnT3) or Synaptoporin at postnatal days 2, 4, 8, 12, 16, and in the adult. Ultimately, Gα knockout resulted in a reduced developmental growth of synaptic mossy fiber terminal fields by 37% in the adult Stratum lucidum and by 30% in the total mossy fiber tract size. Other morphological parameters such as projection length of the infrapyramidal bundle of the tract were increased (+52% in Gα mice). In contrast, Gα knockout had no effects on the mossy fiber tract. Moreover, by using primary heterozygous and homozygous Gα knockout hippocampal cultures, we detected a strongly pronounced reduction in axon and dendrite length (-50% and -38%, respectively) as well as axon and dendrite arborization complexity (-75% and -72% branch nodes, respectively) in the homozygous knockout. Deletion of both splice variants Gα and Gα partially rescued the in vivo and completely reconstituted the in vitro effects, indicating an opposing functional relevance of the two Gα splice variants for neuronal development and synaptic connectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.16248DOI Listing

Publication Analysis

Top Keywords

mossy fiber
24
fiber tract
16
gα knockout
16
13
splice variants
12
gα gα
12
variants gα
8
axon dendrite
8
fiber
7
mossy
6

Similar Publications

Regulation of dentate gyrus pattern separation by hilus ectopic granule cells.

Cogn Neurodyn

December 2025

State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People's Republic of China.

The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear.

View Article and Find Full Text PDF

Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.

View Article and Find Full Text PDF

Towards an Understanding of the Dentate Gyrus Hilus.

Hippocampus

January 2025

Department of Child and Adolescent Psychology, Neuroscience & Physiology, and Psychiatry and the Neuroscience Institute, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA.

For many years, the hilus of the dentate gyrus (DG) was a mystery because anatomical data suggested a bewildering array of cells without clear organization. Moreover, some of the anatomical information led to more questions than answers. For example, it had been identified that one of the major cell types in the hilus, the mossy cell, innervates granule cells (GCs).

View Article and Find Full Text PDF

Introduction: We investigated whether the cerebellum develops neuropathology that correlates with well-accepted Alzheimer's disease (AD) neuropathological markers and cognitive status.

Methods: We studied cerebellar cytoarchitecture in a cohort (N = 30) of brain donors. In a larger cohort (N = 605), we queried whether the weight of the contents of the posterior fossa (PF), which contains primarily cerebellum, correlated with dementia status.

View Article and Find Full Text PDF

The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!