Fabry disease, an X-linked lysosomal storage disorder caused by galactosidase α (GLA) gene mutations, exhibits diverse clinical manifestations, and poses significant diagnostic challenges. Early diagnosis and treatment are crucial for improved patient outcomes, pressing the need for reliable biomarkers. In this study, we aimed to identify miRNA candidates as potential biomarkers for Fabry disease using the KingFisher™ automated isolation method and NanoString nCounter® miRNA detection assay. Clinical serum samples were collected from both healthy subjects and Fabry disease patients. RNA extraction from the samples was performed using the KingFisher™ automated isolation method with the MagMAX mirVanaTM kit or manually using the Qiagen miRNeasy kit. The subsequent NanoString nCounter® miRNA detection assay showed consistent performance and no correlation between RNA input concentration and raw count, ensuring reliable and reproducible results. Interestingly, the detection range and highly differential miRNA between the control and disease groups were found to be distinct depending on the isolation method employed. Nevertheless, enrichment analysis of miRNA-targeting genes consistently revealed significant associations with angiogenesis pathways in both isolation methods. Additionally, our investigation into the impact of enzyme replacement therapy on miRNA expression indicated that some differential miRNAs may be sensitive to treatment. Our study provides valuable insights to identify miRNA biomarkers for Fabry disease. While different isolation methods yielded various detection ranges and highly differential miRNAs, the consistent association with angiogenesis pathways suggests their significance in disease progression. These findings lay the groundwork for further investigations and validation studies, ultimately leading to the development of non-invasive and reliable biomarkers to aid in early diagnosis and treatment monitoring for Fabry disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515968PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301733PLOS

Publication Analysis

Top Keywords

fabry disease
24
isolation method
12
disease
8
early diagnosis
8
diagnosis treatment
8
reliable biomarkers
8
identify mirna
8
biomarkers fabry
8
kingfisher™ automated
8
automated isolation
8

Similar Publications

Clinical management of female patients with Fabry disease based on expert consensus.

Orphanet J Rare Dis

January 2025

Department of Nephrology and Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Fabry disease is an X-linked lysosomal storage disorder that causes accumulation of glycosphingolipids in body tissues and fluids, leading to progressive organ damage and life-threatening complications. It can affect both males and females and can be classified into classic or later-onset phenotypes. The disease severity in females ranges from asymptomatic to the more severe, classic phenotype.

View Article and Find Full Text PDF

Microcystin (MC), a hepatotoxin produced by cyanobacteria, was introduced into the Indian River Lagoon (IRL), Florida, in 2005 through freshwater outflows. Since then, MC has been detected in humans, domestic animals, and wildlife in the lagoon. Potential public health effects associated with MC exposure along the IRL include an increased risk of non-alcoholic liver disease among area residents.

View Article and Find Full Text PDF

Anderson-Fabry Disease: Focus on Ophthalmological Implications.

Life (Basel)

November 2024

Rare, Degenerative and Inflammatory Ocular Diseases Unit, Department of Sense Organs, La Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy.

Fabry disease (FD) is a rare X-linked lysosomal storage disorder with a broad spectrum of clinical manifestations, including severe complications, such as end-stage renal disease, hypertrophic cardiomyopathy, and cerebrovascular disease. Enzyme replacement therapy (ERT), when initiated early, has been shown to reduce the incidence of severe events and slow disease progression. In the classic form, characterized by the absence of α-galactosidase A (α-Gal A) enzyme activity, diagnosis is straightforward.

View Article and Find Full Text PDF

UPLC-MS/MS High-Risk Screening for Sphingolipidoses Using Dried Urine Spots.

Biomolecules

December 2024

Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche-CHUS, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada.

Background: Early detection of sphingolipidoses is crucial to prevent irreversible complications and improve patient outcomes. The use of urine samples dried on filter paper (DUS) is a non-invasive strategy that simplifies the collection, storage, and shipping of samples compared to using liquid urine specimens.

Objectives: (1) Develop and validate a multiplex ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methodology using DUS to quantify twenty-one lysosphingolipids normalized to creatinine for eight different sphingolipidoses.

View Article and Find Full Text PDF

We presented a case of a 49-year-old presenting with atypical chest pain and hypertrophic phenotype cardiomyopathy without coronary artery disease. At cardiac magnetic resonance (CMR), the left ventricle was of normal volumes and preserved global ejection fraction with an asymmetric wall hypertrophy. The evaluation of native myocardial T1 has been calculated at an average global value of 924 ms, compatible with hypertrophic phenotype cardiomyopathy with reduced native T1 values as observed in Anderson-Fabry disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!