Studies on animal energetics often focus on standardized metabolic rates to facilitate comparison across systems. Yet these standardized measurements often do not capture the realistic demographic and environmental variation that is common in natural settings. Rather, individuals included in these studies are often non-reproducing, uninjured, resting adults that have not recently eaten-far from a representative sample. We measured the respiratory rates of the sand fiddler crab Leptuca pugilator in air immediately after capture in the field, and compared rates between males, females of different reproductive states, and juveniles. As expected, we show that metabolic rates were influenced by body mass and activity level. We also show that being vitellogenic or gravid had only minor impacts on metabolic costs of females. Importantly, we demonstrate how considering demographics allows for the detection of phenomena that would otherwise go unnoticed. We found that field metabolic rates of L. pugilator in air are as much as an order of magnitude higher than previous standard metabolic rates measured on post-prandial, quiescent individuals. These higher rates may reflect a combination of high activity and active digestion, as fiddler crabs actively feed during low tide periods. Our results highlight the importance of considering differences in sex, life history stage, and reproductive state of organisms in fluctuating environments, such as intertidal habitats, when assessing energy expenditure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515983PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308617PLOS

Publication Analysis

Top Keywords

metabolic rates
20
sand fiddler
8
fiddler crab
8
crab leptuca
8
leptuca pugilator
8
pugilator air
8
rates
7
metabolic
6
rates demographics
4
demographics sand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!