Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heterostructures, composed of semiconducting transition-metal dichalcogenides (TMDC) and magnetic van-der-Waals materials, offer exciting prospects for the manipulation of the TMDC valley properties via proximity interaction with the magnetic material. We show that the atomic proximity of monolayer MoSe and the antiferromagnetic van-der-Waals crystal CrSBr leads to an unexpected breaking of time-reversal symmetry, with originally perpendicular spin directions in both materials. The observed effect can be traced back to a proximity-induced exchange interaction via first-principles calculations. The resulting spin splitting in MoSe is determined experimentally and theoretically to be on the order of a few meV. Moreover, we find a more than 2 orders of magnitude longer valley lifetime of spin-polarized charge carriers in the heterostructure, as compared to monolayer MoSe/SiO, driven by a Mott transition in the type-III band-aligned heterostructure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562783 | PMC |
http://dx.doi.org/10.1021/acsnano.4c07336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!