ConspectusInsulin has remained indispensable in the treatment of diabetes since it was first discovered in 1921. Unlike small molecular drugs, insulin and other protein drugs are prone to degradation when exposed to elevated temperatures, mechanical agitation during transportation, and prolonged storage periods. Therefore, strict cold-chain management is crucial for the insulin supply, requiring significant resources, which can limit the access to insulin, particularly in low-income areas. Moreover, although insulin formulations have advanced tremendously in the last century, insulin treatment still imposes a challenging regimen and provides suboptimal outcomes for the majority of patients. There is an increasing focus on pursuing improved pharmacology, specifically on safer, more user-friendly insulin therapies that minimize the self-management burden. These challenges underscore the need for developing novel insulin formulations with improved stability that are compatible with advanced insulin therapy.Insulin stabilization can be achieved through either chemical modification of insulin or formulation component design. Inspired by insulin-like peptides from invertebrates, we have developed novel stable insulin analogs based on a fundamental understanding of the insulin receptor engagement for insulin bioactivity. We created a novel four-disulfide insulin analog with high aggregation stability and potency by introducing a fourth disulfide bond between a C-terminal extended insulin A-chain and residues near the C-terminus of the B-chain. In an effort to stabilize insulin in its monomeric state to develop ultrafast-acting insulin with rapid absorption upon injection, we have developed a series of structurally miniaturized yet fully active insulin analogs that do not form dimers due to the lack of the canonical B-chain C-terminal octapeptide. Additionally, our study provided strategies for expanding the scope of cucurbit[7]uril (CB[7])-assisted insulin stabilization by engineering safe and biodegradable CB[7]-zwitterionic polypeptide excipients. We also explored insulin N-terminal substitution methods to achieve pH-dependent insulin stabilization without prolonging the duration of action.This Account describes our exploration of engineering stable insulin analogs and formulation design strategies for stabilizing insulin in aqueous solutions. Beyond conventional stabilization strategies for insulin injections, the unmet challenges and recent innovations in insulin stabilization are discussed, addressing the growing demand for alternative, less invasive routes of insulin administration. Additionally, we aim to provide a thorough overview of insulin stabilization from the perspective of commercially available insulin drugs and common pharmaceutical engineering practices in the industry. We also highlight unresolved insulin stabilization challenges and ongoing research strategies. We anticipate that further emphasis on collective efforts of protein engineering, pharmaceutical formulation design, and drug delivery will inform the development of stable and advanced insulin therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.4c00500 | DOI Listing |
Cardiovasc Drugs Ther
January 2025
Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China.
Background: Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice.
View Article and Find Full Text PDFPurpose: To gather the current opinion among Italian gynecologists and endocrinologists regarding the definition, diagnosis, and treatment of polycystic ovary syndrome (PCOS).
Method: A Delphi survey consisting of 26 statements was designed by a nine-member panel (consisting of members from the Italian Society of Endocrinology (SIE) and the Experts Group AQon Inositol in Basic and Clinical Research and on PCOS (EGOI-PCOS)) and distributed to 102 experts in PCOS across the fields of gynecology and endocrinology. Consensus was defined as an agreement between at least 70% of responders.
J Endocrinol
January 2025
V Dubois, Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Glucocorticoids and androgens affect each other in several ways. In metabolic organs such as adipose tissue and the liver, androgens enhance glucocorticoid-induced insulin resistance and promote fat accumulation in male mice. However, the direct contribution of the androgen receptor (AR) to these effects is unknown.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.
Aims: This study aimed to identify key factors with the greatest influence on glycaemic outcomes in young individuals with type 1 diabetes (T1D) and very elevated glycaemia after 3 months of automated insulin delivery (AID).
Materials And Methods: Data were combined and analysed from two separate and previously published studies with similar inclusion criteria assessing AID (MiniMed 780G) efficacy among young individuals naïve to AID (aged 7-25 years) with glycated haemoglobin A1c (HbA1c) ≥69 mmol/mol (≥8.5%).
Curr Ther Res Clin Exp
December 2024
Clinical trial institutions, The First People's Hospital of Guangyuan, Guangyuan, Sichuan, China.
Background: Type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) are highly prevalent diseases that constitute enormous public health problems. The efficacy of dipeptidyl peptidase-4 (DPP-4) inhibitors in blood glucose control in T2DM patients with NAFLD has been established, but little is known about its effect on liver enzyme levels.
Objective: This meta-analysis aimed to evaluate the influences of DPP-4 inhibitors on alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in patients with T2DM and NAFLD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!