A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of valley degeneracy on the thermoelectric properties of zig-zag graphene nanoribbons with staggered sublattice potentials and transverse electric fields. | LitMetric

Impact of valley degeneracy on the thermoelectric properties of zig-zag graphene nanoribbons with staggered sublattice potentials and transverse electric fields.

Phys Chem Chem Phys

Department of Electrical Engineering and Department of Physics, National Central University, Chungli, 32001 Taiwan, China.

Published: November 2024

This study investigates the band inversion of flat bands in zig-zag graphene nanoribbons (ZGNRs) using a tight-binding model. The band inversion results from symmetry breaking in the transverse direction, achievable through deposition on specific substrates such as separated silicon carbide or hexagonal boron nitride sheets. Upon band inversion, ZGNRs exhibit electronic structures characterized by valley degeneracy and band gap properties, which can be modulated by transverse electric fields. To explore the impact of this level degeneracy on thermoelectric properties, we employ Green's function techniques to calculate thermoelectric quantities in ZGNR segments with staggered sublattice potentials and transverse electric fields. Two carrier transport scenarios are considered: the chemical potential is positioned above and below the highest occupied molecular orbital. We analyze thermionic-assisted transport (TAT) and direct ballistic transport (DBT). Level degeneracy enhances the electric power factors of ZGNRs by increasing electrical conductance, while the Seebeck coefficient remains robust in the TAT scenario. Conversely, in DBT, the enhancement of the power factor primarily stems from improvements in the Seebeck coefficient at elevated temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp03178dDOI Listing

Publication Analysis

Top Keywords

transverse electric
12
electric fields
12
band inversion
12
valley degeneracy
8
degeneracy thermoelectric
8
thermoelectric properties
8
zig-zag graphene
8
graphene nanoribbons
8
staggered sublattice
8
sublattice potentials
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!