Materials possessing multiple properties and functionalities, that can be controlled or modulated by external stimuli, are a central focus of current research in materials sciences due to their potential to significantly enhance various future technological applications. Herein, we report a significant advancement in this field through the development of a smart, multifunctional organomagnetic composite material. By utilizing a thin layer of polydimethylsiloxane (PDMS) and polypyrrole (PPy) precursors, doped with nickel nanoparticles (NiNPs), we have created an innovative organomagnetic, PDMS/PPy/NiNPs (PPN), single-layer composite film that displays multistimuli responsivity. The study presents the first demonstration of a multifunctional flexible, three-component film structure integrating the structural and flexible PDMS component, together with a conductive polymer component and metal-based nanoparticles into a single-layer design, which displays enhanced and unprecedented responsivity properties against multiple different stimuli. Unlike typical stacked multilayered structures, that exhibit one or two functionalities at most, this novel configuration exhibits multiple functionalities, including magnetoresistance, mechanical stress response, piezoresistivity, and temperature change sensitivity. The as-prepared film demonstrates notable magnetoresistance responsivity, with a relative electrical resistance, Δ/, changing under a weak magnetic field and under ambient conditions. The significance of our study lies in the film's versatility, stability, and sensitivity, especially within the physiological temperature range, making it highly relevant for future biomedical applications. Furthemore, the film's sensitivity to mechanical deformation reveals an impressive piezoresistance behavior. Unlike existing multilayer architectures of higher complexity, our single-layer thin film offers a simpler, more flexible, and reliable solution with a broad range of stimuli-sensing capabilities. The significance of this novel multiresponsive composite material is underscored by the growing demand for advanced materials in biomedical devices, magnetic switches, sensors, electronic skin, transistors, and organic spintronic devices. These promising organomagnetic self-standing layers provide a robust platform for future technological innovations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c14857 | DOI Listing |
Turk J Chem
November 2024
Research Center in Industrial Technologies CRTI, Algiers, Algeria.
A novel silica-based material (SBM), synthesized from chemically-, thermally-, and mechanically-treated blast furnace slag (TBFS), was examined for its batch-mode lead adsorption capacity based on various parameters. Physicochemical examinations revealed that the formulation of the new SBM consisted mainly of silica, which represented 81.79% of its total composition.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Jung-gu, Seoul 04620, Republic of Korea.
In this study, epoxy-based composites were fabricated using a layer-by-layer assembly technique, and their mechanical properties were systematically evaluated. The inclusion of cellulose nanocrystals led to variations in the mechanical properties of the composites. These modified properties were assessed through tensile and flexural tests, with each layer cast to enhance strength.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-Gu, Seoul 06978, Republic of Korea.
Gallium-based liquid metals remain in a liquid state at room temperature and exhibit excellent electrical and thermal conductivities, low viscosity, and low toxicity, making them ideal for creating highly stretchable and conductive composites suitable for flexible electronic devices. Despite these benefits, conventional single-layer liquid metal composites face challenges, such as liquid metal leakage during deformation (e.g.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland.
This article describes an innovative thermal insulation barrier in the form of a sandwich panel manufactured using 3D FDM printing technology. The internal structure (core structure) of the barrier is based on the Kelvin foam model. This paper presents the influence of the parameters (the height h and the porosity P of a single core cell) of the barrier on its properties (thermal conductivity, thermal resistance, compressive strength, and quasi-static indentation strength).
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, Peking University, Beijing 1008711, P. R. China.
Intelligent soft robots that integrate both structural color and controllable actuation ability have attracted substantial attention for constructing biomimetic systems, biomedical devices, and soft robotics. However, simultaneously endowing single-layer cholesteric liquid crystal elastomer (CLCE) soft actuators with reversible 3D deformability and vivid structural color changes is still challenging. Herein, a multi-responsive (force, heat and light) single-layer 3D deformable soft actuator with vivid structural color-changing ability is realized through the reduced graphene oxide (RGO) deposition-induced Janus structure of the CLCE using a precisely-controlled evaporation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!