A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Validation of a smartphone-compatible MIP-based sensor for bisphenol A determination in wastewater samples. | LitMetric

A handheld smartphone-compatible molecularly imprinted polymer (MIP)-based sensor was developed for the analysis of bisphenol A (BPA) in wastewater samples. Sensing elements based on ethylene glycol methacrylate phosphate (EGMP)-containing MIP films were designed and optimized using molecular dynamics simulations. The highly porous MIP films were synthesized via in situ polymerization, employing a fragment-based approach. The colorimetric response was based on the 4-aminoantipyrine method, while the MIP films were further utilized to detect BPA with a smartphone. The proposed sensor exhibited a wide linear range from 5 to 250 μM, with a limit of detection (LOD) of 5 μM (S/N = 3). Furthermore, the designed analytical system demonstrated excellent analytical performance in terms of selectivity, stability, and reproducibility. During sensor validation, real wastewater samples were successfully tested for BPA, showcasing the feasibility of the smartphone-compatible MIP-based sensor. Recovery values of 87.1-114.6% underscored the efficacy and reliability of the developed sensor system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-024-05616-yDOI Listing

Publication Analysis

Top Keywords

mip-based sensor
12
wastewater samples
12
mip films
12
smartphone-compatible mip-based
8
sensor
6
validation smartphone-compatible
4
sensor bisphenol
4
bisphenol determination
4
determination wastewater
4
samples handheld
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!