Background: Microecological equilibrium is essential for human health. Previous research has demonstrated that Streptococcus strain A, the main bacterial group in the respiratory tract, can suppress harmful microbes and protect the body. In this study, Streptococcus strain D19 was isolated from the oral and pharyngeal cavities of healthy children. Its antibacterial mechanism against Acinetobacter baumannii was examined, as well as its potential to prevent inflammatory damage to cells. We evaluated the effect of the fermentation conditions of D19 on inhibition of Acinetobacter baumannii growth; Isolation and purification of antibacterial active components of strain D19 and molecular mechanism of inhibition of Acinetobacter baumannii; Molecular mechanism of D19 antibacterial protein reversing cellular inflammatory injury induced by Acinetobacter baumannii.
Results: The supernatant of fermentation broth of Streptococcus D19 was the active component against Acinetobacter baumannii, but the bacteria had no antibacterial activity. The supernatant of D19 fermentation broth was precipitated by (NH)SO solution, and the protein was the active antibacterial component. After gel filtration chromatography and anion gel filtration chromatography, the molecular weight of antibacterial protein was 53kD. D19 antibacterial protein can improve cell membrane permeability, limit extracellular soluble protein release, inhibit Acinetobacter baumannii biofilm formation, and prevent Acinetobacter baumannii adhesion. Acinetobacter baumannii induces inflammatory damage to respiratory cells via ferroptosis, and the D19 antibacterial protein can counteract this damage, protecting the respiratory tract.
Conclusion: Streptococcus strain D19, as a potential probiotic, inhibits the growth of Acinetobacter baumannii and the inflammatory damage of respiratory cells, playing a protective role in human respiratory health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514839 | PMC |
http://dx.doi.org/10.1186/s12866-024-03589-7 | DOI Listing |
Elife
January 2025
Laboratory of Molecular Microbiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS.
View Article and Find Full Text PDFVet Res Commun
January 2025
School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil.
Endometritis is one of the main reproductive disorders in mares and due to the increasing prevalence of antibiotic resistance, the use of probiotics in the prevention and treatment of endometritis in mares has gained interest, given their potential to restore and maintain a healthy uterine microbiota. Therefore, the aim of this study was to evaluate the antimicrobial properties of total metabolites of Lactobacillus acidophilus (LA) and Lactiplantibacillus plantarum (LP) against common equine endometrial pathogenic bacteria in vitro (Acinetobacter baumannii, Escherichia coli (1), Escherichia coli (2), Escherichia coli (3), Escherichia coli (4), Enterobacter cloacae, Streptococcus equi, Staphylococcus warneri, Actinobacillus equi and Klebesiella pneumoniae), as well as to assess their low molecular weight metabolites (loM) and extracellular vesicle (EVs) inhibition capacity over a multidrug-resistant E. coli isolated from mares with clinical endometritis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
The novel pathogen, Elizabethkingia anophelis, has gained attention due to its high mortality rates and drug resistance facilitated by its inherent metallo-β-lactamases (MBLs) genes. This study successfully identified and outlined the functions of the B3-Q MBLs variant, GOB-38, in a clinical sample of E. anophelis.
View Article and Find Full Text PDFJ Clin Microbiol
December 2024
Clinical Microbiology, University of Catania, Catania, Italy.
Unlabelled: The performance of the Liofilchem Compact Antimicrobial Susceptibility Panel (ComASP) Cefiderocol was evaluated in a multicenter study. Enterobacterales, , and clinical isolates and challenge isolates were tested by three and one sites, respectively. Minimum inhibitory concentration (MIC) testing was performed by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution and ComASP, which included two reading endpoints (CLSI read; MIC is the first well in which reduction of growth is <1 mm or light haze/faint turbidity] and ComASP [ComASP read; MIC is the first well at which 100% inhibition of growth occurs]).
View Article and Find Full Text PDFmBio
December 2024
Infection Program, Department of Microbiology, Monash University, Biomedicine Discovery Institute, Melbourne, Victoria, Australia.
is a Gram-negative opportunistic pathogen and is a common cause of nosocomial infections. The increasing development of antibiotic resistance in this organism is a global health concern. The clinical isolate AB307-0294 produces a type VI secretion system (T6SS) that delivers three antibacterial effector proteins that give this strain a competitive advantage against other bacteria in polymicrobial environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!