A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tailoring smart hydrogels through manipulation of heterogeneous subdomains. | LitMetric

Tailoring smart hydrogels through manipulation of heterogeneous subdomains.

Nat Commun

The Harold & Inge Marcus Department of Industrial & Manufacturing Engineering, The Pennsylvania State University, University Park, PA, USA.

Published: October 2024

The mechanical interactions among integrated cellular structures in soft tissues dictate the mechanical behaviors and morphogenetic deformations observed in living organisms. However, replicating these multifaceted attributes in synthetic soft materials remains a challenge. In this work, we develop a smart hydrogel system featuring engineered stiff cellular patterns that induce strain-driven heterogeneous subdomains within the hydrogel film. These subdomains arise from the distinct mechanical responses of the pattern and film domains under applied mechanical forces. Unlike previous studies that incorporate reinforced inclusions into soft matrices to tailor material properties, our method manipulates the localization, integration, and interaction of these subdomain building blocks within the soft film. This enables extensive tuning of both local and global behaviors. Notably, we introduce a subdomain-interface mechanism that allows for the concurrent customization and decoupling of mechanical properties and shape transformations within a single material system-an achievement rarely accomplished with current synthetic soft materials. Additionally, our use of in-situ imaging characterizations, including full-field strain mapping via digital imaging correlation and reciprocal-space patterns through fast Fourier transform analysis of real-space pattern domains, provides rapid real-time monitoring tools to uncover the underlying principles governing tailored multiscale heterogeneities and intricate behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514287PMC
http://dx.doi.org/10.1038/s41467-024-53552-3DOI Listing

Publication Analysis

Top Keywords

heterogeneous subdomains
8
synthetic soft
8
soft materials
8
mechanical
5
soft
5
tailoring smart
4
smart hydrogels
4
hydrogels manipulation
4
manipulation heterogeneous
4
subdomains mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!