A rare homozygous variant of induced severe cardiomyopathy and a cardiac conduction disorder: a case report.

Front Cardiovasc Med

Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.

Published: October 2024

AI Article Synopsis

  • The choline kinase beta (CHKB) gene is vital for mitochondrial function and choline metabolism, and mutations can cause conditions like megaconial congenital muscular dystrophy (MCMD), leading to severe cardiac and neurological issues.
  • A case study involving a 13-year-old boy revealed a homozygous nonsense variant (c.598delC) in the CHKB gene, resulting in significant heart problems and neurological symptoms, while whole exome sequencing confirmed the pathogenic effect.
  • This research enhances our understanding of CHKB mutations' effects on patients and suggests that cardiac resynchronization therapy could be beneficial for those with choline metabolic disorders linked to heart complications.

Article Abstract

Background: The (choline kinase beta) gene plays a crucial role in regulating mitochondrial function and choline metabolism. Mutations in lead to conditions such as megaconial congenital muscular dystrophy (MCMD), characterized by enlarged mitochondria and impaired mitochondrial function, inducing various clinical features in neurological and cardiac performance. Herein, we report a rare case presenting with dilated cardiomyopathy as the dominant feature with a homozygous nonsense variant of and the related therapeutic strategy.

Case Presentation: The proband, a 13-year-old male, presented with a complex clinical profile characterized by mild intellectual disability and severe cardiac impairment, including reduced activity tolerance, suspected acute heart failure, significant cardiac enlargement, a left anterior fascicular block, and a complete right bundle branch block. Whole exome sequencing (WES) identified a homozygous nonsense variant, c.598delC (p.Q200Rfs*11) of the gene, that resulted in disease caused by amino acid sequence changes, a truncated protein, and splice site changes, as demonstrated by MutationTaster analysis. The protein structure of CHKB was built and named AF-Q9Y259-F1. The residue around 200 amino acid sites changed in CHKB p.Q200Rfs*11 with unaltered hydrogen bonds which indicated the pathogenicity of the variant mainly originated from a truncated protein induced by the nonsense mutation. The heart blocks in the proband were considered to be associated with choline metabolic impairment, and thus cardiac resynchronization therapy would benefit the patient. Furthermore, the missense homozygous or compound heterozygous variants of as well as the combined compound heterozygous missense and nonsense variants of usually lead to neurological impairments and muscular weakness.

Conclusion: This study expands the spectrum of mutations and provides essential information for the genotype-phenotype map of a nonsense variant of the gene. It is important to confirm a differential diagnosis among such patients using WES analyses. Regular cardiac and musculoskeletal monitoring is recommended for MCMD patients. Patients with a CHKB deficiency presenting with heart blocks could benefit from the administration of cardiac resynchronization therapy. This therapeutic approach might improve cardiac function and conduction in patients with CHKB-related cardiomyopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502308PMC
http://dx.doi.org/10.3389/fcvm.2024.1469237DOI Listing

Publication Analysis

Top Keywords

nonsense variant
12
cardiac
8
mitochondrial function
8
homozygous nonsense
8
amino acid
8
truncated protein
8
heart blocks
8
cardiac resynchronization
8
resynchronization therapy
8
compound heterozygous
8

Similar Publications

The mutational landscape of TP53, a tumor suppressor mutated in about half of all cancers, includes over 2,000 known missense mutations. To fully leverage TP53 mutation status for personalized medicine, a thorough understanding of the functional diversity of these mutations is essential. We conducted a deep mutational scan using saturation genome editing with CRISPR-mediated homology-directed repair to engineer 9,225 TP53 variants in cancer cells.

View Article and Find Full Text PDF

Genetic Variant Analyses Identify Novel Candidate Autism Risk Genes from a Highly Consanguineous Cohort of 104 Families from Oman.

Int J Mol Sci

December 2024

Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar.

Deficits in social communication, restricted interests, and repetitive behaviours are hallmarks of autism spectrum disorder (ASD). Despite high genetic heritability, the majority of clinically diagnosed ASD cases have unknown genetic origins. We performed genome sequencing on mothers, fathers, and affected individuals from 104 families with ASD in Oman, a Middle Eastern country underrepresented in international genetic studies.

View Article and Find Full Text PDF

Introduction: Pathogenic variants in the gene are linked to a spectrum of syndromes that exhibit partial clinical overlap. Hemizygous loss-of-function variants are considered lethal in males, while heterozygous loss-of-function variants generally result in oro-facial-digital syndrome type 1. A reported phenotype, Simpson-Golabi-Behmel syndrome type 2, was published once but remains controversial, with many specialists questioning its validity and arguing about its continued listing in the OMIM database.

View Article and Find Full Text PDF

: The gene encodes for the catalytic α subunit of Cytoplasmic phenylalanine-tRNA synthetase (FARS1), an essential enzyme for protein biosynthesis in transferring its amino acid component to tRNAs. Biallelic pathogenic variants have been associated with a multisystemic condition, characterized by variable expressivity and incomplete penetrance. Here, we report the case of an 11 year-old girl presenting interstitial lung disease, supratentorial leukoencephalopathy with brain cysts, hepatic dysfunction, hypoalbuminemia, skin and joint hyperlaxity, growth retardation, and dysmorphic features.

View Article and Find Full Text PDF

Biallelic pathogenic variants in the nebulin ( ) gene lead to the congenital muscle disease nemaline myopathy. In-frame deletion of exon 55 (ΔExon55) is the most common disease-causing variant in . Previously, a mouse model of was developed; however, it presented an uncharacteristically severe phenotype with a near complete reduction in transcript expression that is not observed in exon 55 patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!