A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microplastic predictive modelling with the integration of Artificial Neural Networks and Hidden Markov Models (ANN-HMM). | LitMetric

Microplastic predictive modelling with the integration of Artificial Neural Networks and Hidden Markov Models (ANN-HMM).

J Environ Health Sci Eng

Department of Electronics and Communication Engineering, Marthandam College of Engineering and Technology, Marthandam, Tamilnadu India.

Published: December 2024

Microplastic pollution poses a significant threat to our environment, necessitating effective predictive modelling approaches for better management and mitigation. In this study, we introduce a pioneering methodology that fuses the power of Artificial Neural Networks (ANN) and Hidden Markov Models (HMM) for microplastic predictive modelling. Leveraging a comprehensive dataset, our integrated model exhibits exceptional performance, with an Accuracy of 0.96, Precision of 0.96, Recall of 0.97, and an F1 Score of 0.96. The achieved Accuracy underscores the model's proficiency in distinguishing microplastic and non-microplastic entities, promising robust and reliable predictions. Precision, as a measure of correct positive identifications, demonstrates our model's effectiveness in minimizing false positives, a crucial aspect for environmental monitoring. Moreover, the perfect Recall score signifies the model's ability to detect all relevant microplastic instances, addressing concerns about false negatives. The F1 Score encapsulates this dual proficiency, showcasing a harmonious trade-off between precision and recall. Our research not only advances the field of microplastic prediction but also highlights the potential of synergizing ANN and HMM methodologies for comprehensive environmental assessments. The reported performance metrics underscore the practical applicability of our approach, offering a valuable tool for tackling the pervasive issue of microplastic pollution and fostering proactive environmental stewardship.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499502PMC
http://dx.doi.org/10.1007/s40201-024-00920-2DOI Listing

Publication Analysis

Top Keywords

predictive modelling
12
microplastic predictive
8
artificial neural
8
neural networks
8
hidden markov
8
markov models
8
microplastic pollution
8
microplastic
7
modelling integration
4
integration artificial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!