Type 2 diabetes (T2D) and obesity are prevalent metabolic disorders affecting millions of individuals worldwide. A new effective therapeutic drug called tirzepatide for the treatment of obesity and T2D is a dual agonist of the GIP receptor and GLP-1 receptor. Tirzepatide is clinically more effective than GLP-1 receptor agonists but the reasons why are not well understood. Tirzepatide reportedly stimulates the GIP receptor more potently than the GLP-1 receptor. However, tirzepatide signaling has not been thoroughly investigated at the E354 (wildtype) or Q354 (E354Q) GIP receptor variants. The E354Q variant is associated increased risk of T2D and lower body mass index. To better understand GIP receptor signaling we characterized the activity of endogenous agonists and tirzepatide at both GIP receptor variants. Using Cos7 cells we examined wildtype and E354Q GIP receptor signaling, analyzing cAMP and IP accumulation as well as AKT, ERK1/2 and CREB phosphorylation. GIP(1-42) and GIP(1-30)NH displayed equipotent effects on these pathways excluding CREB phosphorylation where GIP(1-30)NH was more potent than GIP(1-42) at the E354Q GIP receptor. Tirzepatide favored cAMP signaling at both variants. These findings indicate that tirzepatide is a biased agonist towards Gα signaling and suggests it equally activates the wildtype and E354Q GIP receptor variants. We also observed differences between the pharmacology of the GIP receptor variants with endogenous peptides, which may help to explain differences in phenotype. These findings contribute to a comprehensive understanding of GIP receptor signaling, and will aid development of therapies combating T2D and obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502443PMC
http://dx.doi.org/10.3389/fphar.2024.1463313DOI Listing

Publication Analysis

Top Keywords

gip receptor
44
receptor variants
20
e354q gip
16
receptor
14
glp-1 receptor
12
receptor tirzepatide
12
receptor signaling
12
gip
11
tirzepatide
8
t2d obesity
8

Similar Publications

Objective: Previous experiments have demonstrated that BGM0504, a GLP-1R/GIPR dual agonist drug by molecular dynamics-guided optimization, had enhanced agonistic activity compared to tirzepatide. This study aims to investigate its safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) in Chinese healthy volunteers.

Methods: A randomized, double-blind, placebo-controlled and dose-escalation Phase I study was conducted as follows: a single dose (2.

View Article and Find Full Text PDF

The other side of the incretin story: GIPR signaling in energy homeostasis.

Cell Metab

January 2025

Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT 06520, USA. Electronic address:

Incretin receptor agonists have been effective in combatting obesity and diabetes. While the body of knowledge regarding the signaling mechanisms of glucagon-like peptide 1 (GLP-1) receptor agonists is ever-growing, glucose-dependent insulinotropic polypeptide receptor (GIPR) agonists are less understood. The previewed papers offer insight into the impact of adipose GIPR on energy and weight homeostasis.

View Article and Find Full Text PDF

Potential Use of GLP-1 and GIP/GLP-1 Receptor Agonists for Respiratory Disorders: Where Are We at?

Medicina (Kaunas)

December 2024

School of Medicine, PROMISE Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy.

Chronic respiratory disorders are the third leading cause of mortality globally. Consequently, there is a continuous pursuit of effective therapies beyond those currently available. The therapeutic potential of the glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide/GLP-1 (GIP/GLP-1) receptor agonists extends beyond the regulation of glycemia, including glucometabolic, cardiovascular, and renal effects, rendering them viable candidates, due to their mechanisms of action, for the possible treatment of respiratory disorders.

View Article and Find Full Text PDF

Biotechnology Revolution Shaping the Future of Diabetes Management.

Biomolecules

December 2024

Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania.

Diabetes mellitus (DM) has a millennia-long history, with early references dating back to ancient Egypt and India. However, it was not until the 20th century that the connection between diabetes and insulin was fully understood. The sequencing of insulin in the 1950s initiated the convergence of biotechnology and diabetes management, leading to the development of recombinant human insulin in 1982.

View Article and Find Full Text PDF

Tirzepatide is a first-in-class dual agonist at receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) for the treatment of T2D and obesity, with unprecedented efficacy for glycaemic control, reductions in body weight and improvements in blood pressure and lipid profile compared with placebo and GLP-1 receptor agonists. To date, clinical trials of tirzepatide have fulfilled the requirement by regulatory authorities of demonstrated cardiovascular safety in high-risk patients. Whether cardiovascular benefits will be found with dual GLP-1/GIP receptor agonists remains uncertain, and the contribution of GIP receptor activation to cardiovascular risk has not been established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!