A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering Optimization of Producing High-Purity Dichlorosilane in a Fixed-Bed Reactor by Trichlorosilane Decomposition. | LitMetric

Engineering Optimization of Producing High-Purity Dichlorosilane in a Fixed-Bed Reactor by Trichlorosilane Decomposition.

ACS Omega

State Key Lab of Silicon and Advanced Semiconductor Materials and School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

Published: October 2024

High-purity dichlorosilane (DCS) is an important raw material for thin film deposition in the semiconductor industry, such as epitaxial silicon, which is mainly produced by trichlorosilane (TCS) catalytic decomposition in a fixed-bed reactor. The productivity of DCS is strongly dependent on the controlling of the TCS decomposition reaction process, associated with the cost in practical application. In this study, we have performed computational fluid dynamics (CFD) simulation on the TCS decomposition reaction kinetics in a cylindrical fixed-bed reactor, in which the effects of catalyst bed height, feed temperature, and feed flow rate are stressed to predict the conversion rate of TCS and the generation rate of DCS. This indicates that the increase of bed height helps the reaction to proceed adequately, but too large a bed height does not improve the DCS generation rate. Meanwhile, the feed temperature and reactor temperature have important effects on the DCS generation rate. However, it is found that changing the feed flow rate and L/D ratio cannot effectively improve the DCS generation rate while the bed volume remains constant. Furthermore, we have designed a fixed-bed reactor to verify the simulation results, which are in good agreement with each other. These results are of significance for the practical industrial production of high-purity DCS in a fixed-bed reactor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500161PMC
http://dx.doi.org/10.1021/acsomega.4c07049DOI Listing

Publication Analysis

Top Keywords

fixed-bed reactor
20
generation rate
16
bed height
12
dcs generation
12
high-purity dichlorosilane
8
tcs decomposition
8
decomposition reaction
8
feed temperature
8
feed flow
8
flow rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!