Deciphering the Two-Step Hydride Mechanism of Monoamine Oxidase Flavoenzymes.

ACS Omega

Theory Department, Laboratory for Computational Biochemistry and Drug Design, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia.

Published: October 2024

The complete two-step hydride transfer mechanism of amine oxidation involved in the metabolism of monoamine neurotransmitters was scrutinized by DFT calculations. In living organisms, this process is catalyzed by monoamine oxidase enzymes. Herein, we focus on some intriguing aspects of the reaction that may have been previously noticed but have not been clarified to date. The first step of the reaction includes the C-H bond cleavage on the methylene group vicinal to the amino group of the monoamine substrate and the subsequent transfer of hydrogen to the N5 atom of the flavin prosthetic group of the enzyme. We confirmed the nature of this step to be hydride transfer by evaluation of the pertinent HOMO-LUMO gap together with analysis of orbital contours alongside the intrinsic reaction coordinate profile. Next, we investigated the rather peculiar intermediate adduct that may form between the amine substrate and the flavin molecule, featuring an unusually long C-N bond of ∼1.62 Å. Although this bond is quite stable in the gas phase, the presence of just a few explicit water molecules facilitates its dissociation almost without energy input so that the amine-flavin intermediate can form an ionic pair instead. We attribute the existence of the unusual C-N bond to a fragile balance between opposing electronic structure effects, as evaluated by the natural bond orbital analysis. In line with this, the intermediate in the solution or in the enzyme active site can exist in two energetically almost equivalent forms, namely, as a covalently bound complex or as an ion pair, as suggested by previous studies. Finally, we characterized the transformation of the intermediate to the fully reduced flavin and imine products via proton transfer from the amino group to the flavin N1 atom, completing the reductive part of the catalytic cycle. Although we found that explicit solvation substantially boosts the kinetics of this step, the corresponding barrier is significantly lower than that in the hydride transfer step, confirming hydrogen abstraction as the rate-limiting step of amine oxidation and validating the two-step hydride transfer mechanism of monoamine oxidases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500147PMC
http://dx.doi.org/10.1021/acsomega.4c06575DOI Listing

Publication Analysis

Top Keywords

hydride transfer
16
two-step hydride
12
mechanism monoamine
8
monoamine oxidase
8
transfer mechanism
8
amine oxidation
8
amino group
8
c-n bond
8
transfer
6
hydride
5

Similar Publications

Combining experiment and theory, the mechanisms of H2 activation by the potassium-bridged aluminyl dimer K2[Al(NON)]2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tertbutyl-9,9-dimethylxanthene) and its monomeric K+-sequestered counterpart have been investigated. These systems show diverging reactivity towards the activation of dihydrogen, with the dimeric species undergoing formal oxidative addition of H2 at each Al centre under ambient conditions, and the monomer proving to be inert to dihydrogen addition. Noting that this K+ dependence is inconsistent with classical models of single-centre reactivity for carbene-like Al(I) species, we rationalize these observations instead by a cooperative frustrated Lewis pair (FLP)-type mechanism (for the dimer) in which the aluminium centre acts as the Lewis base and the K+ centres as Lewis acids.

View Article and Find Full Text PDF

An unusual chiral-at-metal mechanism for BINOL-metal asymmetric catalysis.

Nat Commun

January 2025

State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Chiral binaphthols (BINOL)-metal combinations serve as powerful catalysts in asymmetric synthesis. Their chiral induction mode, however, typically relies on multifarious non-covalent interactions between the substrate and the BINOL ligand. In this work, we demonstrate that the chiral-at-metal stereoinduction mode could serve as an alternative mechanism for BINOL-metal catalysis, based on mechanistic studies of BINOL-aluminum-catalyzed asymmetric hydroboration of heteroaryl ketones.

View Article and Find Full Text PDF

Catalysis activity and chemoselectivity control with the ligand in Ru-H pincer complexes.

Dalton Trans

January 2025

Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA.

(PhPNP)Ru(H)(Cl)(CO) serves as a precatalyst to a variety of important catalytic transformations but most improvements have been restricted to the replacement of the CO ligand to the hydride or changing the Ph groups of the pincer for other aryl or alkyl groups. The ligand to the hydride is often another hydride and studies that utilize other ligands in catalysis are limited. In this work, we synthesized a series of [(PhPNP)Ru(H)(CO)(L)][BPh] complexes bearing isonitrile, PMe, or a N-heterocyclic ligand to the Ru-H.

View Article and Find Full Text PDF

Abstraction of Hydride from Alkanes and Dihydrogen by the Perfluorotrityl Cation.

Angew Chem Int Ed Engl

January 2025

Texas A&M University, Department of Chemistry, Texas A&M University, 77842, College Station, UNITED STATES OF AMERICA.

Lewis acids play a central role in a large variety of chemical transformations. The reactivity of the strongest Lewis acids is typically studied in the context of affinity towards hard bases, such as fluoride or oxygenous species. Carbocations can be viewed as soft Lewis acids, possessing significant affinity for softer bases, such as hydride.

View Article and Find Full Text PDF

The second 3d-transition metal incorporation in Ni-(oxy)hydroxide has a drastic effect on alkaline OER and alcohol dehydrogenation reactivity. While Mn incorporation suppresses the alkaline OER, it greatly improves the alcohol dehydrogenation reactivity. A complete reversal of reactivity is obtained when Fe is incorporated, which shows better performance for alkaline OER with poor alcohol dehydrogenation reactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!