Many of the biosynthetic pathways for ribosomal synthesized and post-translationally modified peptide (RiPP) natural products make use of multi-domain enzymes with separate recruitment and catalysis domains that separately bind and modify peptide substrates. This "division of labor" allows RiPP enzymes to use relatively open and promiscuous active sites to perform chemistry at multiple residues within a peptide substrate seemingly regardless of the surrounding context. Defining, measuring, and predicting the seemingly broad substrate promiscuity of RiPPs necessitates high throughput assays, capable of assessing activity against very large libraries of peptides. Using mRNA display, a high throughput peptide display technology, we examine the substrate promiscuity of the RiPP cyclodehydratase, LynD. The vast substrate profiling that can be done with mRNA display enables the construction of deep learning models for accurate prediction of substrate processing by LynD. These models further inform on epistatic interactions involved in enzymatic processing. This work will facilitate the further elucidation of other RiPP enzymes and enable their use in the modification of mRNA display libraries for selection of modified peptide-based inhibitors and therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507813PMC
http://dx.doi.org/10.1101/2024.10.14.618330DOI Listing

Publication Analysis

Top Keywords

mrna display
12
cyclodehydratase lynd
8
learning models
8
ripp enzymes
8
substrate promiscuity
8
high throughput
8
substrate
5
assessing substrate
4
substrate scope
4
scope cyclodehydratase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!