The hepatic P450 hemoproteins CYPs 4A are typical N-terminally anchored Type I endoplasmic reticulum (ER)-proteins, that are inducible by hypolipidemic drugs and other "peroxisome proliferators". They are engaged in the ω-/ω-1-oxidation of various fatty acids including arachidonic acid, prostaglandins and leukotrienes and in the biotransformation of some therapeutic drugs. Herein we report that of the mammalian liver CYPs 4A, human CYP4A11 and mouse Cyp4a12a are preferential targets of the ER-lysosome-associated degradation (ERLAD). Consequently, these proteins are stabilized both as 1%Triton X100-soluble and -insoluble species in mouse hepatocytes and HepG2-cells deficient in the autophagic initiation ATG5-gene. Although these proteins exhibit surface LC3-interacting regions (LIRs) that would target them directly to the autophagosome, they nevertheless interact intimately with the autophagic receptor SQSTM1/p62. Through structural deletion analyses and site-directed mutagenesis, we have identified the Cyp4A-interacting p62 subdomain to lie between residues 170 and 233, which include its Traf6-binding and LIM-binding subdomains. Mice carrying a liver-specific genetic deletion of p62 residues 69-251 (p62Mut) that includes the CYP4A-interacting subdomain also exhibit Cyp4a-protein stabilization both as Triton X100-soluble and -insoluble species. Consistently, p62Mut mouse liver microsomes exhibit enhanced ω- and ω-1-hydroxylation of arachidonic acid to its physiologically active metabolites 19- and 20-HETEs relative to the corresponding wild-type mouse liver microsomes. Collectively, our findings suggest that any disruption of CYP4A ERLAD results in functionally active P450 protein and consequent production of proinflammatory metabolites on one hand, and insoluble aggregates on the other, which may contribute to pathological aggregates i.e. Mallory-Denk bodies/inclusions, hallmarks of many liver diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507770 | PMC |
http://dx.doi.org/10.1101/2024.10.14.618315 | DOI Listing |
Autophagy
December 2024
Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
Bulk macroautophagy/autophagy, typically induced by starvation, is generally thought to non-selectively isolate cytosolic components for degradation. However, a detailed analysis of bulk autophagy cargo has not been conducted. We recently employed mass spectrometry to analyze the contents of isolated autophagic bodies.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
Numerous studies have explored the role of cannabinoids in neurological conditions, chronic pain and neurodegenerative diseases. Restoring autophagy has been proposed as a potential target for the treatment of neurodegenerative diseases. In our study, we used a neuroblastoma cell line that overexpresses wild-type α-synuclein to investigate the effects of cannabidiol on autophagy modulation and reduction in the level of cytosolic α-synuclein.
View Article and Find Full Text PDFHistochem Cell Biol
December 2024
Stem Cell Laboratory, University of Health Sciences Gulhane Health Sciences Institute, Ankara, Turkey.
The damaged organ may experience severe pathological alterations as a result of tissue ischemia-reperfusion (I/R). The study of stem cell-based repair therapies is actively being conducted, and the outcomes and therapeutic potential of these cells are both promising. Autophagy checks protein homeostasis by breaking down huge damaged proteins or organelles.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
December 2024
Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
CD40, a member of the tumor necrosis factor (TNF) receptor superfamily, plays an important role not only in the immune system but also in tumor progression. CD40 ligation reportedly promotes autophagy in immune cells. However, the effects of CD40 ligation on autophagy and its mechanism in solid tumor cells are still unclear.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
Estrogen (E2) deficiency is a risk factor for cardiovascular disease (CVD), however, the exact mechanism for the E2 protective effect on CVD remains unclear. This study aimed to investigate the estrogen receptor (ER) and non-receptor mediated effects of E2 treatment on the cardiac expression of adenosine monophosphate-dependent protein kinase (AMPK), autophagic, mitophagy and mitochondrial homeostasis-regulating genes in ovariectomized (OVX) rats. Female rats were divided into two main groups; sham and bilaterally OVX rats, then each group was subdivided into four subgroups according to treatment; untreated, subcutaneously treated with E2 (30 μg/kg), or Fulvestrant (F) (5 mg/Kg), or a combination of both drugs for 28 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!