The blood brain barrier's (BBB) unique endothelial cells and tight junctions selectively regulate passage of molecules to the central nervous system (CNS) to prevent pathogen entry and maintain neural homeostasis. Various neurological conditions and neurodegenerative diseases benefit from small molecules capable of BBB penetration (BBBP) to elicit a therapeutic effect. Predicting BBBP often involves assessment of molecular properties such as lipophilicity (log ) and polar surface area (PSA) using the CNS multiparameter optimization (MPO) method. This study curated an open-source dataset to benchmark rigorously machine learning (ML) and neural network (NN) models with each other and with MPO for predicting BBBP. Our analysis demonstrated that AI models, especially attentive NNs using stereochemical features, significantly outperform MPO in predicting BBBP. An attentive graph neural network (GNN), we refer to as CANDID-CNS™, achieved a 0.23-0.26 higher AUROC score than MPO on full test sets, and a 0.17-0.19 higher score on stereoisomers filtered subsets. Regarding stereoisomers that differ in BBBP, which MPO cannot distinguish, attentive GNNs correctly classify these with AUROC and MCC metrics comparable to or better than MPO's AUROC and MCC on less difficult test molecules. These findings suggest that integrating attentive GNN models into pharmaceutical drug discovery processes can substantially improve prediction rates, and thereby reduce the timeline, cost, and increase probability of success of designing brain penetrant therapeutics for the treatment of a wide variety of neurological and neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507759 | PMC |
http://dx.doi.org/10.1101/2024.10.12.617907 | DOI Listing |
Dev Sci
March 2025
Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
Newborns are able to neurally discriminate between speech and nonspeech right after birth. To date it remains unknown whether this early speech discrimination and the underlying neural language network is associated with later language development. Preterm-born children are an interesting cohort to investigate this relationship, as previous studies have shown that preterm-born neonates exhibit alterations of speech processing and have a greater risk of later language deficits.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.
View Article and Find Full Text PDFInt J Exerc Sci
December 2024
Department of Sport and Health Sciences, Technical University of Munich, Munich, BY, GERMANY.
In weightlifting, quantitative kinematic analysis is essential for evaluating snatch performance. While marker-based (MB) approaches are commonly used, they are impractical for training or competitions. Markerless video-based (VB) systems utilizing deep learning-based pose estimation algorithms could address this issue.
View Article and Find Full Text PDFJ R Stat Soc Ser C Appl Stat
January 2025
Department of Biostatistics and Health Data Science, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
The aim of dynamic prediction is to provide individualized risk predictions over time, which are updated as new data become available. In pursuit of constructing a dynamic prediction model for a progressive eye disorder, age-related macular degeneration (AMD), we propose a time-dependent Cox survival neural network (tdCoxSNN) to predict its progression using longitudinal fundus images. tdCoxSNN builds upon the time-dependent Cox model by utilizing a neural network to capture the nonlinear effect of time-dependent covariates on the survival outcome.
View Article and Find Full Text PDFiScience
January 2025
Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America.
Speech production engages a distributed network of cortical and subcortical brain regions. The supplementary motor area (SMA) has long been thought to be a key hub in coordinating across these regions to initiate voluntary movements, including speech. We analyzed direct intracranial recordings from 115 patients with epilepsy as they articulated a single word in a subset of trials from a picture-naming task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!