Persistent Pulmonary Hypertension of the Newborn (PPHN) is a life-threatening condition characterized by the failure of normal circulatory transition after birth, leading to sustained pulmonary hypertension and severe hypoxemia. Despite advancements in neonatal care, PPHN remains a significant cause of morbidity and mortality among newborns, particularly in full-term and near-term infants. This review provides a comprehensive overview of current pharmaceutical strategies for managing PPHN, focusing on various therapeutic agents' mechanisms, efficacy, and safety. Key interventions include inhaled nitric oxide, which has become the standard treatment for reducing pulmonary vascular resistance, alongside prostacyclin analogs, phosphodiesterase inhibitors, and endothelin receptor antagonists. Additionally, extracorporeal membrane oxygenation (ECMO) is highlighted as a critical intervention for severe, refractory cases. The review also discusses emerging therapies and the potential role of personalized medicine in improving treatment outcomes. Despite the progress made, challenges remain, including the timely diagnosis of PPHN and the need for accessible treatments in resource-limited settings. As research continues to uncover the underlying pathophysiology of PPHN, it is crucial to develop more targeted and effective pharmaceutical strategies. This review aims to inform clinicians and researchers of the current state of PPHN management and the ongoing advancements that may shape future therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512740 | PMC |
http://dx.doi.org/10.7759/cureus.70307 | DOI Listing |
Breast Cancer Res
December 2024
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Center for Joint Surgery, Southwest Hospital, Army Medical University, Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
Purpose: This study aims to investigate the suitable surgical strategies for applying TaBw01 porous tantalum rod across different stages of osteonecrosis of the femoral head (ONFH).
Methods: TaBw01 tantalum rods were fabricated using type FTaY-1 tantalum powder via the foam impregnation-sintering method. Mechanical testing with the Instron 8801 universal testing machine and finite element analysis (FEA) assessed single tantalum rod implantation and impaction bone grafting combined with rod implantation.
J Neuroinflammation
December 2024
Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
Multiple Sclerosis (MS), a neuroinflammatory disease of the central nervous system, is one of the commonest causes of non-traumatic disability among young adults. Impaired cognition arises as an impactful symptom affecting more than 50% of the patients and with substantial impact on social, economic, and individual wellbeing. Despite the lack of therapeutic strategies, many efforts have been made to understand the mechanisms behind cognitive impairment in MS patients.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Precision Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
Background: Patient-derived organoids (PDOs) represent a promising approach for replicating the characteristics of original tumors and facilitating drug testing for personalized treatments across diverse cancer types. However, clinical evidence regarding their application to esophageal cancer remains limited. This study aims to evaluate the efficacy of implementing PDOs in clinical practice to benefit patients with esophageal squamous cell carcinoma (ESCC).
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea.
DOCK5 (dedicator of cytokinesis 5), a guanine nucleotide exchange factor for Rac1, has been implicated in BMP2-mediated osteoblast differentiation, but its specific role in osteogenesis and bone regeneration remained unclear. This study investigated the effect of DOCK5 on bone regeneration using C21, a DOCK5 chemical inhibitor, and Dock5-deficient mice. Osteoblast differentiation and bone regeneration were analyzed using bone marrow mesenchymal stem cells (BMSCs) and various animal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!