AI Article Synopsis

  • This study explores the use of metal/MXene-based materials for energy conversion, particularly focusing on a novel method for synthesizing a CoIr nanoalloy catalyst using Lewis acidic molten salt to etch a MAX precursor.
  • The resulting CoIr/MXene catalyst exhibits excellent hydrogen evolution reaction (HER) performance with minimal overpotentials and high stability, outperforming commercial catalysts in alkaline media.
  • This research highlights the advantages of the molten salt etching technique in synthesizing a highly efficient catalyst and contributes to the development of advanced metal/MXene-based materials for energy applications.

Article Abstract

Metal/MXene-based materials show broad prospects in energy conversation through the strong metal-support interaction (SMSI). However, the difficulty and harshness of synthesis heavily limit their further application. Herein, using Lewis acidic molten salt to etch MAX as a precursor of MXene, a more convenient and safer strategy is designed to in situ construct the MXene-supported CoIr nanoalloy (CoIr/MXene) catalyst through Ti─O─M bond. The special layered structure and oxygen-containing functional group of MXene regulate the SMSI upon CoIr nanoalloys. Moreover, the contact angle and in situ Raman test results exhibit good interface hydrophilicity of MXene, enhancing the water adsorption on interfaces, and accelerating the mass transfer process. As a result, CoIr/MXene shows high hydrogen evolution reaction (HER) performance, which only needs overpotentials of 34 and 50 mV to drive a current density of 10 mA cm in alkaline and acidic media, respectively, with excellent stability. Especially, in alkaline media, CoIr/MXene possesses 6 times higher HER mass activity (4.297 A mg ) than commercial Pt/C catalysts (0.686 A mg ) at the potential of 50 mV, indicating larger active site density and intrinsic activity for CoIr/MXene. This work expands the application of the molten salt assist etching strategy and provides new insight for the development of metal/MXene-based catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202401449DOI Listing

Publication Analysis

Top Keywords

molten salt
12
coir nanoalloys
8
lewis acidic
8
acidic molten
8
hydrogen evolution
8
evolution reaction
8
coupling coir
4
mxene
4
nanoalloys mxene
4
mxene lewis
4

Similar Publications

Hydrogen evolution from water, catalyzed by solar energy, is a promising yet challenging endeavor. Small-sized catalysts usually exhibit high utilization and high performance in the hydrogen evolution field. However, the high surface energy tends to make them aggregate.

View Article and Find Full Text PDF

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures.

View Article and Find Full Text PDF

Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.

View Article and Find Full Text PDF

Recycling waste salt in the dry reprocessing of nuclear fuel and reducing electric energy consumption in the electrorefining process are crucial steps toward addressing significant challenges in this field. The present study proposes a novel approach to purify waste salt by selectively adsorbing excessive fission products using 5A molecular sieves (5A), based on the principles of electrorefining, with the ultimate aim of achieving sustainable development in nuclear fuel. First, Lutetium (Lu)-Bi alloy was synthesized through constant potential electrolysis in the LiCl-KCl-LuCl melt, resulting in a 90.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!