Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carvacrol is a potent antimicrobial and anti-inflammatory agent, while curcumin possesses antioxidant, anti-inflammatory, and anticancer properties. These phytochemicals have poor solubility, bioavailability, and stability in their free form. Nanoencapsulation can reduce these limitations with enhanced translational capability. Integrating nanocarriers with 3D-printed calcium phosphate (CaP) scaffolds presents a novel strategy for bone regeneration. Carvacrol and curcumin-loaded nanoparticles (CC-NP) synthesized with melt emulsification produced negatively charged, monodispersed particles with a hydrodynamic diameter of ≈127 nm. Their release from the scaffold shows a biphasic release under physiological and acidic conditions. At pH 5.0, the CC-NP exhibits a 53% release of curcumin and nearly 100% release of carvacrol, compared to 19% and 36% from their respective drug solutions. At pH 7.4, ≈40% of curcumin and 76% of carvacrol releases, highlighting their pH-sensitive release mechanism. In vitro studies demonstrate a 1.4-fold increase in osteoblast cell viability with CC-NP treatment. CC-NP exhibit cytotoxic effects against osteosarcoma cells, reducing cell viability by ≈2.9-fold. The antibacterial efficacy of CC-NP evaluated against Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) exhibiting 98% antibacterial efficacy. This approach enhances therapeutic outcomes and minimizes the potential side effects associated with conventional treatments, paving the way for innovative applications in regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636189 | PMC |
http://dx.doi.org/10.1002/smll.202405642 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!