Multimodal cancer therapies are often required for progressive cancers due to the high persistence and mortality of the disease and the negative systemic side effects of traditional therapeutic methods. Thus, the development of less invasive modalities for recurring treatment cycles is of clinical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation by applying controlled ON-OFF thermal cycles using near-infrared laser irradiation. The system is composed of poly(caprolactone) microparticles of 200 μm size containing molybdenum disulfide (MoS) nanosheets as the photothermal agent and hydrophilic doxorubicin or hydrophobic violacein, as model drugs. Upon irradiation, the nanosheets heat up to ≥50 °C leading to polymer softening and release of the drug. MoS nanosheets exhibit high photothermal conversion efficiency and require low-power laser irradiation. A machine learning algorithm was applied to acquire the optimal laser operation conditions. In a mouse subcutaneous model of 4T1 triple-negative breast cancer, 25 microparticles were intratumorally administered, and after 3-cycle laser treatment, the system conferred synergistic phototherapeutic and chemotherapeutic effects. Our on-demand, pulsatile synergistic treatment resulted in increased median survival up to 39 days post start of treatment compared to untreated mice, with complete eradication of the tumors at the primary site. Such a system is therapeutically relevant for patients in need of recurring cycles of treatment on small tumors, since it provides precise localization and low invasiveness and is not cross-resistant with other treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c07843DOI Listing

Publication Analysis

Top Keywords

breast cancer
8
laser irradiation
8
mos nanosheets
8
treatment
6
system
5
machine learning-optimized
4
learning-optimized system
4
system pulsatile
4
pulsatile photo-
4
photo- chemotherapeutic
4

Similar Publications

Importance: Research indicates that social drivers of health are associated with cancer screening adherence, although the exact magnitude of these associations remains unclear.

Objective: To investigate the associations between individual-level social risks and nonadherence to guideline-recommended cancer screenings.

Design, Setting, And Participants: This cross-sectional study used 2022 Behavioral Risk Factor Surveillance System data from 39 US states and Washington, DC.

View Article and Find Full Text PDF

Canine mammary tumors as a promising adjunct preclinical model for human breast cancer research: similarities, opportunities, and challenges.

Arch Pharm Res

January 2025

Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.

Despite significant progress in the field of human breast cancer research and treatment, there is a consistent increase in the incidence rate of 0.5 percent annually, posing challenges in the development of effective novel therapeutic strategies. The failure rate of drugs in clinical trials stands at approximately 95%, primarily attributed to the limitations and lack of reliability of existing preclinical models, such as mice, which do not mimic human tumor biology.

View Article and Find Full Text PDF

A Review on Integrating Breast Cancer Clinical Data: A Unified Platform Perspective.

Curr Treat Options Oncol

January 2025

Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India.

Integrating clinical datasets in breast cancer research emerges as a necessary tool for advancing our knowledge of the disease and enhancing patient outcomes. Synthesizing diverse datasets offers advantages, from facilitating evidence-based insights to enabling predictive analytics and precision medicine strategies. Crucially, effective integration of clinical datasets necessitates collaborative efforts, policy interventions, and technological advancements to elevate global standards of breast cancer care.

View Article and Find Full Text PDF

Objectives: Automated breast ultrasound imaging (ABUS) results in a reduction in breast cancer stage at diagnosis beyond that seen with mammographic screening in women with increased breast density or who are at a high risk of breast cancer. It is unknown if the addition of ABUS to mammography or ABUS imaging alone, in this population, is a cost-effective screening strategy.

Methods: A discrete event simulation (Monte Carlo) model was developed to assess the costs of screening, diagnostic evaluation, biopsy, and breast cancer treatment.

View Article and Find Full Text PDF

Background: Flat epithelial atypia (FEA), a rare breast proliferative lesion, is often diagnosed following core biopsy (CB) of mammographic microcalcifications. In the prospective multi-institution TBCRC 034 trial, we investigate the upgrade rate to ductal carcinoma in situ (DCIS) or invasive cancer following excision for patients diagnosed with FEA on CB.

Patients And Methods: Patients with a breast imaging reporting and data system (BI-RADS) ≤ 4 imaging abnormality and a concordant CB diagnosis of FEA were identified for excision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!