Supplemental Magnesium Gluconate Enhances Scaffold-Mediated New Bone Formation and Natural Bone Healing by Angiogenic- and Wnt Signal-Associated Osteogenic Activation.

J Biomed Mater Res A

Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea.

Published: January 2025

Local implantation or supplementation of magnesium gluconate (MgG) is being investigated as an effective approach to bone repair. Although studies have highlighted the possible mechanisms in Mg ion-stimulated new bone formation, the role of MgG in healing bone defects and the signaling mechanisms are not yet completely understood. In this study, we explored how supplemental MgG has bone-specific beneficial effects by delivering MgG locally and orally in animal models. We fabricated MgG-incorporated (CMC-M) and -free chitosan (CMC) scaffolds with good microstructures and biocompatible properties. Implantation with CMC-M enhanced bone healing in rat model of mandible defects, compared with CMC, by activating Wnt signals and Wnt-related osteogenic and angiogenic molecules. Oral supplementation with MgG also stimulated bone healing in mouse model of femoral defects along with the increases in Wnt3a and angiogenic and osteogenic factors. Supplemental MgG did not alter nature bone accrual and bone marrow (BM) microenvironment in adult mouse model, but enhanced the functioning of BM stromal cells (BMSCs). Furthermore, MgG directly stimulated the induction of Wnt signaling-, angiogenesis-, and osteogenesis-related molecules in cultures of BMSCs, as well as triggered the migration of endothelial cells. These results suggest that supplemental MgG improves bone repair in a way that is synergistically enhanced by Wnt signal-associated angiogenic and osteogenic molecules. Overall, this study indicates that supplemental MgG might ameliorate oxidative damage in the BM, improve the functionality of BM stem cells, and maintain BM-microenvironmental homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37812DOI Listing

Publication Analysis

Top Keywords

supplemental mgg
16
bone healing
12
bone
10
mgg
9
magnesium gluconate
8
bone formation
8
wnt signal-associated
8
bone repair
8
mouse model
8
angiogenic osteogenic
8

Similar Publications

Effect of oat β-glucan on the freezing resistance of yeast and the underlying mechanism.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, P.R.China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, P.R.China. Electronic address:

The objective of this study was to investigate the protective effects of oat β-glucan (OβG) on yeast subjected to freeze-thaw cycle-induced stress. A range of analytical techniques were employed to identify the underlying molecular mechanisms, including flow cytometry, gas chromatography-mass spectrometry, and quantitative real-time PCR. Following three freeze-thaw cycles, the survival rate of yeast that had been supplemented with 0.

View Article and Find Full Text PDF

Groundnut fodder was utilized as a bioresource for the production of cellulases through solid state fermentation (SSF). Aspergillus unguis was initially grown on modified groundnut fodder for cellulase production and the fodder was hydrolyzed by the crude cellulase extract into fermentable hydrolyzate. The highest titer of Filter paperase (FPase), Carboxymethyl cellulase (CMCase), β-glucosidase, and protein content were found to be 11.

View Article and Find Full Text PDF

Influence of forage-to-concentrate ratio on the effects of a radiata pine bark extract on methane production and fermentation using the rumen simulation technique.

Animal

December 2024

Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Campus Chillán, Chillán 3812120, Chile. Electronic address:

Climate change and food safety standards have intensified research into plant-based compounds as alternatives to dietary supplements in animal feed. These compounds can reduce enteric methane (CH) emissions and the formation of ruminal ammonia. This study investigated the effects of radiata pine bark extract (PBE) supplementation on CH production, ruminal fermentation parameters, and nutrient disappearance using the rumen simulation technique in diets with different forage-to-concentrate (F:C) ratios.

View Article and Find Full Text PDF

This study was designed to evaluate the effect of substituting alfalfa hay with graded levels panicum maximum without or with graded levels of spirulina supplementation on rumen fermentation and nutrient degradability. The evaluation was achieved through an in vitro study, rumen fluid was obtained from adult sheep aged 2 years (fed clover hay), immediately after slaughter. Experimental diets were formulated as isonitrogenous and isocaloric and contained 40% forage.

View Article and Find Full Text PDF

The Phytochemical Properties of Low-Grade Longan Syrup and Its Potential Use as a Dietary Supplement for Honey Bees.

Insects

November 2024

Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.

Climate change significantly affects honey bee populations and their access to natural food sources, demanding alternative economic feed sources. Longan stands out as the most important fruit crop in Southeast Asia, but with a surplus of low-grade fruit that is not suitable for the market. This study investigates the potential of longan syrup as an alternative carbohydrate source for honey bees by measuring sugar composition, phytochemical profiles, feed, and survival, as well as the resulting gut microbial changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!