[Feature detection of B-ultrasound images of intussusception in children based on improved YOLOv8n].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xi'an 710038, P. R. China.

Published: October 2024

To assist grassroots sonographers in accurately and rapidly detecting intussusception lesions from children's abdominal ultrasound images, this paper proposes an improved YOLOv8n children's intussusception detection algorithm, called EMC-YOLOv8n. Firstly, the EfficientViT network with a cascaded group attention module was used as the backbone network to enhance the speed of target detection. Secondly, the improved C2fMBC module was used to replace the C2f module in the neck network to reduce network complexity, and the coordinate attention (CA) module was introduced after each C2fMBC module to enhance attention to positional information. Finally, experiments were conducted on the self-built dataset of intussusception in children. The results showed that the recall rate, average detection accuracy (mAP@0.5) and precision of the EMC-YOLOv8n algorithm improved by 3.9%, 2.1% and 0.9%, respectively, compared to the baseline algorithm. Despite slightly increased network parameters and computational load, significant improvements in detection accuracy enable efficient completion of detection tasks, demonstrating substantial economic and social value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527744PMC
http://dx.doi.org/10.7507/1001-5515.202401017DOI Listing

Publication Analysis

Top Keywords

intussusception children
8
attention module
8
c2fmbc module
8
detection accuracy
8
detection
5
network
5
module
5
[feature detection
4
detection b-ultrasound
4
b-ultrasound images
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!